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We describe some remarkable continuous deformations which create and destroy peaks in periodic
oscillations of the Mackey–Glass equation, a paradigmatic example of a delayed feedback system. Peak
creation and destruction results in richer bifurcation diagrams which, in addition to the familiar branches
arising from period-doubling and peak-adding bifurcations, may also display arbitrary combinations of
doubling and adding, leading to highly complex mosaics of stability domains in control parameter space.
In addition, we show that the onset of higher dimensionality does not alter the prevailing dynamics
instantaneously and, remarkably, even may have no effect at all, a result that cannot be predicted
analytically with standard methods.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The aim of this Letter is to report some intricate routes to
chaos observed in the Mackey–Glass (MG) equation, a paradig-
matic delayed feedback system introduced to model oscillations
and chaos present in a control physiological system related to dy-
namical respiratory and hematopoietic diseases [1–3]. Presently,
delayed feedback systems are an active area of research across dif-
ferent disciplines of science and technology like, e.g. in innovative
applications involving semiconductor lasers [4,5]. Such feedback
processes are also central to life, governing how we grow, respond
to stress and challenge, and regulating factors such as body tem-
perature, blood pressure and cholesterol level. Delayed feedback
mechanisms operate at every level, from the interaction of pro-
teins in cells to the interaction of organisms in complex ecologies
[6,7].

Mathematically, delayed feedback system are described by
delay-differential equations (DDEs), equations far more complex
than ordinary differential equations (ODEs), implying that the
properties of DDEs are far less understood than for ODEs. For sim-
plicity, here we focus on phenomena which we observed in the
single-variable Mackey–Glass equation. We mention, however, that
analogous phenomena are also present in multi-variables delayed
feedback systems such as semiconductor lasers [8].
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The intricate routes to chaos described below arise from re-
markable continuous deformations responsible for creating and de-
stroying isolated peaks in periodic oscillations of the MG equation.
The creation and destruction of single peaks in oscillatory pat-
terns have the net effect of producing richer bifurcation diagrams
which, as described below, may display arbitrary combinations of
period-doubling and peak-adding bifurcations. The result of such
combinations is to produce highly complex mosaics of stability
domains in control parameter space, as exemplified in the phase
diagrams presented below.

Before proceeding, recall that even just a single delay-differen-
tial equation is already equivalent to an infinite dimensional ODE
system [9–12]. This means that delayed feedback systems are far
more complicated than systems governed by ODEs. Accordingly,
there are much less analytical results and methods for DDEs than
for ODEs. For instance, analytical results for DDEs do not go be-
yond fix-point analysis which are usually based on approximations
of some sort like, e.g. asymptotic expansions. DDEs are computa-
tionally intense systems to digest, a fact that helps to explain why
so far they were much less investigated.

Here we present novel phenomena observed during a system-
atic numerical investigation of the MG equations. Our presentation
is essentially descriptive due to the complicated nature of the DDEs
and, as mentioned, to the absence of general methods to go be-
yond fix-point analysis into the new unexplored realm of solutions
with arbitrary periodicities and chaos. As will become clear, our
results uncover a number of regularities and tendencies worth pur-
suing analytically.

As an interesting additional byproduct, we show that the on-
set of the infinite dimensionality characteristic of DDEs does not
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Fig. 1. (Color online.) The route to chaos via waveform deformation observed generically in delayed feedback systems. The top line shows bifurcation diagrams for Eq. (1)
with n = 21 (the white horizontal line in Fig. 4 below). The other panels show the time evolution of the oscillations for selected values of the delay τ . (a) τ = 4, oscillation
with a single peak, of amplitude A; (b) τ = 9, precursor of peak B is visible; (c) τ = 17, oscillation with two peaks, A and B, and precursor of C; (d) τ = 24, period-doublings
(A,A′), (B,B′) and (C,C′); precursor of D is visible; (e) τ = 24.5, precursor of E is visible; (f) τ = 25.5, sudden death of peak C′ , indicated by the arrow.
alter the prevailing dynamics instantaneously, and even may have
no effect at all. This remarkable result cannot be obtained using
standard techniques commonly used to analyze DDEs like, e.g. per-
turbation theory [9–12].

2. Continuous waveform deformations and isolated branches

The Mackey–Glass model is defined by the single-variable equa-
tion [1–3]

dx

dt
= f (x, xτ ) ≡ βxτ

1 + (xτ )n
− γ x, (1)

where xτ ≡ x(t − τ ) represents the variable x at time t − τ ,
and β,γ , τ ,n > 0 are real parameters. Depending on the param-
eters, this equation is known to display a range of periodic and
chaotic dynamics [2,3]. Following tradition, we focus on the orig-
inal Mackey–Glass parameters, namely, β = 0.2 and γ = 0.1. Re-
sults for them are generic. For completeness, we mention that a
bifurcation analysis of the Mackey–Glass equation is already avail-
able, in particular that a sequence of Hopf bifurcations occurs at
the equilibrium as the delay increases [13,14].

The top row of Fig. 1 displays typical bifurcation diagrams ob-
tained by plotting the maxima, peaks, of the numerically computed
solutions as a function of τ . In these diagrams it is possible to
recognize the presence of the familiar period-doubling branches.
However, very distinctly from bifurcation diagrams known for
maps and flows, these figures also show that bifurcation diagrams
for delay-differential equations may also contain isolated branches,
namely single branches that begin or end quite abruptly for spe-
cific parameter values. Examples of isolated branches beginning
suddenly are the ones labeled B, C and D in the left panel at
the top of Fig. 1. An example of a branch ending abruptly is the
branch C′ , indicated by the arrow in the right panel at the top. It
is natural to ask about the origin of such discontinuities. To under-
stand them, we study the time evolution of the solutions before
and after the discontinuities, for the values of τ indicated by the
vertical line segments (a), (b), . . . , (f) in the pair of panels at the
top row of Fig. 1.

Fig. 1(a) shows the time-evolution of x(t) for τ = 4, namely
for a value far from the beginning of branch B. As illustrated by
Fig. 1(a), in this case x(t) is characterized by a smooth periodic os-
cillation with a single peak A within the period. For τ = 9, just
before the beginning of B, the oscillation remains periodic but
starts to develop an inflexion point B as indicated in Fig. 1(b).
We write B below the curve to indicate the fact that this point
is not yet a local maximum of the curve: it is simply a “precursor”
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Fig. 2. (Color online.) Return maps (RM) illustrating the birth and death of the isolated branches seen in bifurcation diagrams in Fig. 1. The left column shows the birth of
branch B while in the right column we depict how branch C′ disappears. Panels (a)–(c) and (e)–(f) show the formation of a cusp when the return map meets the curve
f (x, xτ ) = 0, as indicated in (c) and (g). The three curves in panels (d) and (h) display the time evolution of x, dx/dt , and d2x/dt2. As indicated by the dashed arrows, cusps
occur whenever dx/dt = d2x/dt2 = 0. Here n = 21. See the text for a detailed description.
of what will become a real local maximum when increasing τ ,
giving then birth to the branch B. In Fig. 1(c) we illustrate a sit-
uation where B is a local maximum of the solution (which now
displays two peaks within a period). Similarly as before, the point
C under the curve indicates the precursor of branch C. Fig. 1(d)
illustrates the time-evolution for τ = 17 (vertical segment (d) in
the right panel of the top row). In this figure we easily recognize
the period-doubled peak pairs of similar amplitude, namely (A,A′),
(B,B′), and (C,C′). Also indicated in Fig. 1(d) is the position of the
precursor of peak D. Similarly, Fig. 1(e) shows peak D and the pre-
cursor of E. From this unfolding, one realizes the reason behind
the emergence of the “extra” branches in the bifurcation diagrams:
they all result from deformations suffered by the waveform of the
solution as the parameter varies.

How do branches suddenly disappear from bifurcation dia-
grams? This may be understood by comparing the point indicated
by the arrow in Fig. 1(f) with point C′ in Fig. 1(e). This compar-
ison shows that peak C′ is destroyed by a deformation inverse
to the one responsible for the suddenly creation of branches. We
observed such creations to occur profusely in the Mackey–Glass
equation. Thus, we believe these pattern deformations inducing
creation and destruction of peaks to be a generic characteristic of
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Fig. 3. (Color online.) Unfolding of a period-doubling (A,A′), (B,B′) and (C,C′) which happens for values of τ between those of Figs. 1(c) and (d). The doubling occurs near
τ � 23.2. In (c), one can see imminence of the cuspidal intersection that will give rise to the isolated branch D described in Fig. 1. Here n = 21.
delay-differential equations, not just a peculiarity of the illustrative
model considered.

The extra isolated branches arising through the waveform de-
formations described above should not be confused with the very
common discontinuous branches which arise in bifurcation dia-
grams due to multistability. The latter involve distinct basins of
attraction while in the former the attractor evolves continuously
staying always inside the same basin of attraction. Isolated branches
can be recognized in bifurcation diagrams reported previously in
the literature of delayed feedback systems, e.g. in Ref. [15] for the
Mackey–Glass equation. However, we have not found any earlier
reference addressing them. Although we have also not been able to
locate references discussing waveform deformations and isolated
branches occurring in ODEs, we see no reason for such deforma-
tions not to exist in them.

3. Return maps and genesis of isolated branches

As explained in the previous section, the signature of the birth
and death of isolated branches in the bifurcation diagrams is the
occurrence of inflexion points in the waveforms as parameters are
tuned. Inflexion points occur when both the first and the second
derivatives are zero (the second derivative changes sign):

dx

dt
= d2x

dt2
= 0, and

d3x

dt3
�= 0. (2)

The detailed genesis of isolated branches in bifurcation dia-
grams can be understood by investigating how the return map
(RM) x(t)× x(t − τ ) evolves as a function of τ . Fig. 2 shows several
examples of such return maps plotted together with the solution
of f (x, xτ ) = 0, where f (x, xτ ) is the function defined in Eq. (1).

Fig. 2(a) illustrates this pair of curves for τ = 4. The return
map (indicated by the letters RM) is the thicker curve, a closed
loop which intersects the lighter trace, solutions of f (x, xτ ) = 0,
in two locations: a minimum (on the left) and a maximum, indi-
cated by A. The point A is the same one marked in the bifurcation
diagrams in Fig. 1 and below them, in Fig. 1(a). As τ increases,
the loop grows and gets deformed continuously, developing a re-
gion of strong curvature near the point labeled B in Fig. 1(b). Next,
in Fig. 1(c), we summarize what happens when further increas-
ing τ : the return map crosses once again the curve f (x, xτ ) = 0.
For τbirth = 9.31 . . . the return map shows a cusp that meets the
solution of f (x, xτ ) = 0. Upon further increase of τ , the cusp de-
velops a loop, as illustrated for τ = 9.5 and 9.8. The arrow in this
figure indicates the direction of displacement of the return maps
as τ increases. Fig. 2(d) displays the time evolutions of x, dx/dt ,
and d2x/dt2, where the dashed arrow marks the birth of the iso-
lated branch B in the bifurcation diagram.
By further increasing τ the return map develops additional
loops and intersection, as illustrated in Figs. 2(e) and 2(f). These
intermediary panels help to understand the unfolding of the bifur-
cations seen in Fig. 1 and, more importantly, to understand how
isolated branches die. As indicated by the arrow in Fig. 2(g), when
τ increases one sees that the death of the isolated branch C′ oc-
curs by an inverse process of that responsible for creating isolated
branches and depicted in Fig. 2(c): An existing loop collapses to a
cusp for τdeath = 25.22 . . . , the point where upon further increase
of τ the intersection disappears. The corresponding time evolu-
tions of x, dx/dt , and d2x/dt2 are shown in Fig. 2(h).

To conclude this section, Fig. 3 illustrates how a period-
doubling unfolds as τ increases. In the case in hand one sees the
bifurcation of the peaks A, B and C seen in Fig. 1. Noteworthy
is that period-doubling does not involves cusps but, as expected,
a smooth doubling of the return map. Thus, generic bifurcation
diagrams for the Mackey–Glass system are expected to display
combinations of both isolated and doubling branches, with the
birth/death of the former governed by Eq. (2), which is generic
for delayed feedback systems. Note that while period-doubling im-
plies a doubling in the number of peaks, in general peak-adding
does not significantly alters the value of the period length. The
frequently used term “period-adding” is a misnomer.

4. Impact of waveform deformations in phase diagrams

What is the impact of peak creation and destruction by wave-
form deformation in the overall organization observed in the con-
trol parameter space? It is overwhelming. This is illustrated by
Fig. 4, which was obtained by following the same procedure as
in Ref. [16], namely by counting the number of peaks (maxima) in
a period of x(t) and codifying them in different tonalities, as indi-
cated in the colorbar in the figure. As Fig. 4 shows, both the shape
and the distribution of the several periodicity domains conjure to
form a highly intricate mosaic that is quite difficult to be described
by other means than graphical illustration. It is important to em-
phasize that all phase diagrams presented here display only stable
phases, not boundaries of instability that cannot be measured ex-
perimentally.

Recall that a single delay-differential equation is already equiva-
lent to an infinite dimensional set of ordinary first order differential
equations [9–12]. This means that delayed feedback systems are
far more complicated, general and richer than systems governed
by ODEs. Thus, it is natural to expect DDEs to display all features
which are familiarly found in ODEs. For instance, “shrimps” [17–
24] were reported recently for a three-equations delayed feedback
model intended to describe the dynamics of a red grouse popu-
lation [25]. Similar shrimp-shaped domains of stability also exist
abundantly in the Mackey–Glass equation as may be seen from
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Fig. 4. (Color online.) Phase diagrams displaying an intricate mosaic of high periodicity regions, characterized individually by the number of peaks in a period of x(t), as
indicated by the colorbar. Chaotic phases are shown in black. (a) Global view of parameter space, with the n = 21 horizontal line segment indicating the parameter interval
considered in Figs. 1 and 2. The white domain in the lower-left corner denotes non-zero fixed points (non-oscillatory solutions). (b)–(d) Magnifications of the white boxes.
The white box in (d) is enlarged in Fig. 5 below. Colors are used “mod 14”, i.e. we recycle the same colors for higher periods. Each panel displays the phase-space analysis
of 1000 × 1000 parameter points.

Fig. 5. (Color online.) The typical “chaos-periodicity alternations” observed between the new three-chaos-flanked periodicity islands Ti and the two-chaos-flanked shrimps
Si [17,18]. (a) Distribution of the period length inside the periodicity islands. Here, chaos is shown in green. (b) Same region as in (a), plotted now as an “isospike diagram”
[16], obtained by counting the number of peaks within a period of the solutions. Identical colors indicate identity in the number of peaks in a period. The profusion of colors
illustrate the mosaic formed by the infinite alternation of islands of periodicity. Chaos is shown in black. (c) Enlargement of the white box in (a) and (b). Individual panels
display 600 × 600 parameter points.
the white box in Fig. 4(d), shown magnified in Fig. 5. However the
key questions are: what features can we observe in DDEs that are
not known for ODEs? Are there many?

The control parameter space of delayed feedback systems dis-
plays a large number of novel features characteristic of their
much higher-level of complexity. For example, the familiar shrimp-
shaped domains mentioned above contain a much richer inner
distribution of oscillatory patterns, as reflected by the profusion of
colors of the intricate mosaic of periodicity windows in Fig. 4. Gen-
eralized routes to chaos which mix together period-doubling and
peak-adding phenomena [26–29] are present profusely in DDEs.

Another surprising feature is easily recognizable from the white
domain in the lower-left corner in Fig. 4(a): the effective impact in
the system of a sudden increase from low to infinite dimension-
ality during the passage from τ = 0 to τ �= 0. As it is known, the
delays underlying feedback systems require continuous sets of ini-
tial conditions in order to integrate them, being therefore embed-
ded in an infinite-dimensional phase-space. An important question
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Fig. 6. Bifurcation diagram showing the periodicity windows Si (upper labels) and
Ti (lower labels) separated by windows of chaos. This diagrams was obtained
by varying two parameters simultaneously along the white line, Eq. (3), seen in
Fig. 5(b). Representative parameters for the main periodicity windows are given in
Table 1.

Table 1
Coordinates and number of peaks of the structures Si and Ti seen in Fig. 5.

Structure τ n # of peaks Ni

S1 27.6800 18.9710 15
T1 27.7200 20.4050 25
S2 27.7550 21.6600 22
T2 27.7720 22.2700 32
S3 27.7860 22.7720 29
T3 27.7945 23.0760 39
S4 27.8020 23.3460 36
T4 27.8068 23.5180 46

whose answer is still lacking is the one about the impact of the
sudden “explosion” of the number of degrees of freedom when
delays are switched on in finite-dimensional systems. The wide
non-zero fixed-point domain lying below the hyperbola forming
the lower-left boundary in Fig. 4(a) gives clear evidence of the rel-
ative “lethargy” of the system to react to the passage from one to
infinite degrees of freedom. First, as shown in Fig. 4(a), up to quite
high values of n the onset of higher dimensionality does not alter
the prevailing dynamics instantaneously. Would it be possible to
characterize lethargy analytically, particularly when involving just
simple fixed-points? Second, even more surprising is the fact that
for low values of n the passage from one to infinite degrees of free-
dom has no effect at all in the dynamics, no matter how big the
delay might be. Can such lack of influence be anticipated analyti-
cally, in general?

After characterizing in Fig. 4 the global impact of the waveform
deformations seen in Fig. 1, we now show in Fig. 5 a remarkable
new class of periodicity windows that we observed in DDEs and
that, as far as we know, were not seen before, neither in ODEs nor
in maps. As it is known, shrimps contain two flanks along which
period doubling cascades occur [17–24]. However, as illustrated
in Fig. 5, periodic oscillations for DDEs may also emerge forming
periodicity islands with a very peculiar topological shape, charac-
terized by three flanks along which period-doubling cascades and
chaos occur. The largest of such islands are indicated by the la-
bels Ti in Fig. 5 while shrimps are indicated by Si . As shown in
this figure, DDEs not only present three-chaos-flanked periodicity
domains Ti , but the domains Ti and Si emerge in sequences that
alternate infinitely, increasing their periods and their number of
peaks as n increases, forming unexpected routes to chaos which
accumulate towards specific and wide regions of periodicity.

5. Coding of oscillatory patterns

From the regularities in Fig. 5 one may wonder what sort of
modifications x(t) undergoes in order to produce the alternation
of the Si and Ti structures as the number of peaks in x(t) grow
and the structures accumulate upwards in the figure. The aim of
this section is to show that the waveforms characterizing such al-
ternation can be encoded in a relatively simple way, using a small
number of minimal sub-patterns composing the waveforms.

To this end, we investigate the nature of the dynamical changes
when crossing the Si and Ti structures along some representative
line, say, along the white line in Fig. 5(b) whose equation, for τ in
the interval 27.66 � τ � 27.82, is

n = 35.86τ − 973.634. (3)

More specifically, we computed a bifurcation diagram along this
line, shown in Fig. 6. This diagram displays a rather complex al-
ternation of windows of chaos and periodicity from which it is
not possible to discern Si from Ti . For some representative points
along the white line, Eq. (3), we determined the number of peaks
in each period. The number of peaks are given both in Fig. 6 and,
along with their coordinates, in Table 1. From the table it is obvi-
ous that the number Ni of peaks in both Si from Ti obeys a simple
relation, namely

Ni+1 = Ni + 7, (4)

and that, in addition, Ti contains 10 peaks more than Si .
To see how these extras peaks progressively change the wave-

form when parameters vary, Fig. 7 compares solutions x(t) for the
parameters listed in Table 1. The left column in Fig. 7 shows the
evolution of x(t) for the Si structures while on the right column
we show the evolution for the Ti .

From the waveform for S1 plotted in the top-left panel it is not
difficult to recognize that x(t) may be subdivided according to the
internal distribution of peaks in the pattern. Thus, S1 is composed
by (i) two segments each containing three peaks, shown against
a bluish background, (ii) a segment containing five peaks plot-
ted against a beige and, finally, (iii) a four peaks segment plotted
against a green background. Although the two segments contain-
ing three peaks look quite similar, they are not identical. However,
for simplicity we focus here in the number of peaks, not on exact
identity of patterns.

The subdivision of waveform x(t) for S1 into colored segments
may be further simplified associating a letter A, B , etc. to each
color. Thus, the internal subdivision of x(t) for S1 may be rep-
resented by the string AB AC . Now, looking at S2 in Fig. 7 one
realizes that it may be also decomposed as above: in addition to
the A, B , C segments in common to S1, the waveform contains a
new four-peaked segment that we paint yellow and denote by D .
The whole pattern may be abbreviated AB AD AC , where the un-
derlined letters represent the 3 + 4 extra peaks that the waveform
acquires when passing from S1 to S2. The waveform of the Ti
structures may be decomposed in a similar way. Table 2 summa-
rizes the quite regular waveform subdivision as the period grows,
with the letters inside the boxes indicating the position where the
new 7 peaks are added when passing from i to i +1. We stress the
fact that letters are used here to summarize identity in the number
of peaks but just similarity [not identity] of the waveform segment
corresponding to them. In other words, letters are not meant to
imply that subdivision remain invariant and/or are perfectly iden-
tical. In particular, from Fig. 7 one may spot differences between
patterns corresponding to the same letter as i grows.

It is interesting to observe that the deformations of the seg-
ments corresponding to the various letters A, B , C , E change very
little when passing from one shrimp Si to the next, or from one
Ti to the next. But this is not true for segment D whose shape
evolves sensibly more. Comparing the leftmost with the rightmost
D segments in T4 it is possible to recognize that they are not iden-
tical and are looking more and more like C . It is remarkable that
when i grows the waveforms for Si and Ti increase by the invari-
ant pattern AD which is “inserted” always in the same position, to
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Fig. 7. (Color online.) Temporal evolution of x(t) computed for representative parameters inside the periodic Si and Ti structures located along the white line in Fig. 5(b), and
defined in Table 1. All functions are periodic and can be decomposed in a small number of sub-patterns as indicated by the colors and encoded in regular strings of symbols
(see text).
Table 2
Subdivision of the waveforms Si and Ti in Fig. 7. Boxes indicate position of new
peaks which appear when passing from i to i + 1.

i Si T i

1 AB AC AB AD E AC

2 AB AD AC AB AD AD E AC

3 AB AD AD AC AB AD AD AD E AC

4 AB AD AD AD AC AB AD AD AD AD E AC

the left of AC and E AC , respectively, as indicated in Table 2. The
net effect of this insertion is to induce a shift of subdivisions to
the left.

6. Conclusions and outlook

We reported a number of phenomena observed in phase dia-
grams obtained by systematic numerical investigation of a paradig-
matic delayed feedback system, the Mackey–Glass DDE. Periodic
solutions of this system were shown to display continuous defor-
mations of their waveforms as control parameters are varied. Such
deformations create and destroy peaks in the oscillatory patterns.
Peak creation and destruction results in rich and intricate isolated
branches appearing and disappearing in bifurcation cascades. As a
result of the added flexibility of incorporating an odd number of
branches, sequences of branching cascades in DDEs may emerge in
rich combinations of the familiar peak-adding and period-doubling
bifurcations, something that we believe not to have been observed
in ODEs. Such branching cascades produce highly intricate mosaics
of periodicity domains in control parameter space, tiling it with
very complicated patterns, both regular or not. Further, we found
that the waveforms of families of oscillations can be described sys-
tematically in terms of a rather small number of sub-waveforms
combined in rather simple way. We hope all the aforementioned
novel features to motivate their experimental validation in the near
future, particularly since the Mackey–Glass equation can be real-
ized electronically in the laboratory [30,31].

Our detailed numerical phase diagrams open the possibility of
assessing the quality and the predictive power of the numerous ap-
proximate analytical methods and applications developed over the
years for delay-differential equations. While it is usual to invari-
ably claim analytical estimates of all sorts to be valid for “small
parameters” and/or “small delays”, it is equally usual not to de-
fine what exactly should be understood by the term small [32–34].
The computation of detailed numerical phase diagrams provides
a stringent reference frame against which to check the validity of
all such valuable approximations. They also challenge one to try
to go beyond standard fixed-point analysis. An interesting open
question is to investigate whether the powerful multiple scaling
method efficiently applied to a DDE with a single control param-
eter [35] could be also effective for the three effective parameter
Mackey–Glass equation. In particular, it would de interesting to in-
vestigate whether or not the metric properties found numerically
in Ref. [35] for a system containing a single control parameter sur-
vive when several parameters are changed.

Finally, another characteristic feature of DDEs that we ob-
served to hold over wide parameter ranges is that the onset
of higher-dimensionality does not alter the prevailing dynamics
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instantaneously, and even may have no effect at all. This remark-
able “lethargic effect” cannot be obtained using the familiar per-
turbative techniques to define the stability of fixed-points or to
estimate the boundaries where Hopf bifurcations occur [12]. Fur-
thermore, lethargy is not a peculiarity of the Mackey–Glass equa-
tion but was also found in realistic and well-known lasers systems
[8]. To us, the ubiquitous lethargy in the response seems to provide
strong evidence that a nice result obtained by Mallet-Paret [33] for
a certain type of delay-differential equations, showing the topo-
logical dimension of phase space to be effectively finite, may also
apply to a much wider class of systems then originally thought.
Something that of course needs further investigation.
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