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Helical inner-wall texture prevents jamming in
granular pipe flows

Felix Verbücheln, Eric J. R. Parteli and Thorsten Pöschel*

Granular pipe flows are characterized by intermittent behavior and large, potentially destructive solid

fraction variations in the transport direction. By means of particle-based numerical simulations of

gravity-driven flows in vertical pipes, we show that it is possible to obtain steady material transport by

adding a helical texture to the inner-wall of the pipe. The helical texture leads to a more homogeneous

mass flux along the pipe, prevents the emergence of large density waves and substantially reduces the

probability of plug formation thus avoiding jamming of the particulate flow. We show that the granular

mass flux Q through a pipe of diameter D with a helical texture of wavelength l follows the equation

Q = Q0�{1 � B sin[arctan(2pD/l)]}, where Q0 is the flow without helix, predicted from the well-known

Beverloo equation. Our new expression yields, thus, a modification of the Beverloo equation with only

one additional fit parameter, B, and describes the particle mass flux with the helical texture with

excellent quantitative agreement with simulation results. Future application of the method proposed

here has the potential to improve granular pipe flows in a broad range of processes without the need

for energy input from any external source.

1 Introduction

The transport of a granular material flowing through a pipe
is a process of relevance for a broad range of scientific and
technological areas.1,2 One fundamental problem in such
transport is that the material flow is intrinsically unstable
and characterized by large variations in the solid fraction
(density waves) along the pipe.3,4 These waves induce poten-
tially destructive pressure transients on the inner-wall of the
pipe and provide the mechanism responsible for the inter-
mittent behavior of the flow.

Although the dynamics of density waves in granular pipe
flows have been studied extensively in the past both experi-
mentally5–10 and through different types of models,3,4,11–19

it is still a challenging problem to control the mass flux of
the granular material flowing through a pipe. For example,
Zuriguel et al.20 showed how insertion of an obstacle just above
the outlet of a silo can significantly reduce the probability that
the granular flow is arrested due to the formation of an arch
blocking the silo’s outlet.20 However, most of the proposed
strategies to control the transport along the pipe involve energy
input from an external source, e.g. through application of
electric fields21 or mechanical perturbations.1,22

Here we demonstrate a method to homogenize the mass flux
and avoid flow blockage in granular pipe flows without the
necessity of applying any external source of energy to the
system. Our method consists of adding to the inner-wall of
the pipe a helical texture, which leads to a more homogeneous
distribution of the particles within the pipe thus avoiding the
formation of stable plugs. By means of particle-based numerical
experiments, we will show that it is possible to achieve flows with
prescribed characteristics regarding the particle distribution
within the pipe and the mass flow rate of the granular material
by adjusting the geometric properties of the helix-shaped texture.

2 Numerical experiments

We simulate the process using the Discrete Element Method (DEM),
that is, simultaneously solving Newton’s equations of translational
and rotational motion for all particles. There is a variety of models
to describe the contact forces in DEM simulations, which are
suitable for different particle geometry and material behavior.23–26

In the present paper, we assume viscoelastic interaction in the
normal direction27 and apply a modified Cundall–Strack model28

for the tangential direction.29 The corresponding forces read

~Fn ¼ min 0;�rx3=2 � 3

2
Anr

ffiffiffi
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_x

� �
~en; (1)

where

x = R1 + R2 � |-r1 �
-
r2| (2)
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is the compression of particles of radii R1 and R2 at positions -
r1

and -
r2, and -

en � (-r1 �
-
r2)/|-r1 �

-
r2| is the normal unit vector. The

elastic parameter of eqn (1), r, is a function of the Young’s
modulus, Y, the Poisson’s ratio n, and the effective radius
Reff � R1R2/(R1 + R2),

r � 2Y

3 1� n2ð Þ
ffiffiffiffiffiffiffiffi
Reff

p
; (3)

while the dissipative parameter, An, further depends on the
material viscosities.27 While r can be computed directly from
material properties which are easily available for a variety
of materials, the viscosities needed for An are not directly
available. To determine An, therefore, we use a relation between
the coefficient of restitution, e, for the collision of two isolated
particles, the pre-collisional velocity of these particles, vimp,
and An,30–32 where the Padé approximation is employed as
described elsewhere.33

The tangential force reads29

~Ft ¼ �min m ~Fn

�� ��; ð
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2� n
ffiffiffiffiffiffiffiffiffiffiffi
Reffx

p
dsþ At

ffiffiffiffiffiffiffiffiffiffiffi
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p
vt

� �
~et; (4)

where m is the Coulomb friction coefficient and G is the shear
modulus, which is given by the equation, 2G = Y/(1 + n). The
integral in eqn (4) is performed over the displacement of the
particles at the point of contact for the duration of the con-
tact.28 Moreover, -

vt = vt
-
et stands for the relative tangential

velocity at the point of contact, where -
et is the corresponding

unit vector. The tangential dissipative parameter, At, charac-
terizes the surface roughness and is chosen such that the
prefactors of the normal and tangential deformation rates

( _x and vt) in eqn (1) and (4), respectively, are of the same order
of magnitude.34 Using this assumption, previous authors35

found excellent agreement between simulation results and
experimental values of particle velocity profiles in a gravity-
driven shearing experiment. By comparing eqn (1) and (4), we
obtain At E AnY/(1 � n2).

The integration was performed using LIGGGHTS,29 and the
values of the model parameters are listed in Table 1. The
equations used for computing the forces between particles
and the internal (frictional) wall of the cylinder are the same
as that used for modeling particle–particle collisions where one
of the contact partners is of infinite mass and radius. Moreover,
in order to compute the viscoelastic constant An using an analy-
tical model,33 we assume a coefficient of restitution e E 0.5
associated with a pre-collisional velocity vimp E 1.0 m s�1, which
is of the same order of the average axial particle velocities found in

our simulations as discussed below. Using these parameters
and the material properties specified in Table 1, we obtain An E
7.3 � 10�6 and At E 775.9 for particle–particle collisions, while
for particle-wall collisions these values are An E 8.4 � 10�6 and
At E 891.3.

The integration time step Dt must be small enough to
accurately solve Newton’s equations for the particle interaction.
For undamped collisions, the duration Tcol of the collision can
be estimated using the equation,23

Tcol E 3.21(Meff/r)2/5�vimp
�1/5, (5)

where Meff = m1m2/(m1 + m2) with m1 and m2 standing for the
masses of the interacting particles. Typically a timestep smaller
than about Tcol/50 is recommended.36 Since the collision time
Tcol computed using eqn (5) with the material properties
specified above is about 50 ms, we use here Dt E 6 � 10�7 s,
which is below the recommended upper bound for Dt men-
tioned above.

The pipe has a circular cross-section of diameter D mm and
its length is L = 1 m. At time t = 0, N particles are placed at
random positions within the pipe, where N is chosen such that
the sum of the volumes of all particles amounts to a prescribed
fraction Vf of the pipe volume. The initial velocity of the
particles in the radial direction is chosen randomly between
�vr and vr, with vr = 0.01 m s�1, while the particles have
vanishing initial velocity in the axial direction (vz = 0). Periodic
boundary conditions are applied in the vertical (z) direction. We
have performed simulations with pipes longer than L = 1 m and
found that the results presented in the next section with this
value of L are not affected by finite size effects. That is,
increasing the length of the pipe does not change the results.

3 Results and discussion

We performed simulations using a constant particle diameter d
as specified in Table 1 and different values of pipe diameter D.
We found that the flow behavior depends fundamentally on the
pipe to particle diameter ratio Df � D/d. For Df 4 3 the flow is
intermittent and characterized by a clogging regime where the
average particle velocity in the vertical direction is nearly
constant (Section 3.1). For Df t 3 jamming occurs thus leading
to blockage of the granular flow (Section 3.2). Following the
discussion of these distinct flow regimes we show in Section 3.3
that adding a helical inner-wall texture leads to a more homo-
geneous solid fraction distribution along the pipe thus reducing
the occurrence of clogging and preventing the flow to jam.

3.1 Clogging regime

Fig. 1a shows the evolution of the total kinetic energy of
particles flowing through a vertical pipe with Df = 4. Since
the initial particle velocities in the radial direction are small,
the particles fall freely under the action of gravity during an
initial time before colliding with the inner wall of the pipe.
Collisions between the particles and between the particles and
the wall lead, then, to deceleration of the particles and a

Table 1 Numerical values of the parameters used in the simulations

Parameter Symbol Value

Particle material density rp 2650 kg m�3

Particle diameter d 1.2 mm
Young’s modulus Y 108 Pa
Poisson’s ratio n 0.24
Coulomb’s friction coefficient m 0.5
Pipe length L 1 m
Timestep Dt 6 � 10�7 s
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decrease in the kinetic energy of the system. After a transient
time, the energy gain of the particles due to gravity is nearly
compensated by the energy dissipation due to collisions such

that the total kinetic energy fluctuates around a constant value.
The spatio-temporal image of the volume fraction along the
tube (Fig. 1b) shows the emergence of density waves,3 with the
development of recurrent clogging characterized by the for-
mation of plugs, that is regions with a high packing fraction
(thick dark lines in Fig. 1b) which can either converge or
diverge with time. The flow is inhomogeneous and associated
with strong fluctuations of particle average velocities and solid
fraction both in time and position along the pipe.

Fig. 1c shows the spatio-temporal image of the area-
integrated particle mass flux per unit time along the tube. This
flux is defined as,

:
m(t,z) = rpj(t,z)[vz(t,z)]pD2/4, (6)

where j(t,z) and vz(t,z) are the packing fraction and the average
particle velocity in the vertical direction, respectively, at time t
within the volume element [z + dz]pD2/4. The probability
density distribution f ( :m0) of the mass flux :

m0 �
:

m(t,0) at the
bottom of the pipe, that is at z = 0, is shown in Fig. 1d. We see
that f ( :m0) can be well described by a lognormal distribution
(fit represented by the dashed line in Fig. 1d). The expectation
value of this distribution is around 0.0092 kg s�1 and nearly
equals, thus, the value of mass flux associated with plug flow,
denoted by the thick bright meandering lines in Fig. 1c.

Moreover, the thinner lines in the spatio-temporal plot of
Fig. 1c denote faster moving particle groups and are associated
with different solid fractions, as can be seen from Fig. 1b.
Indeed, these lines denote smaller particle groups which occur
in-between the plugs during the intermittent flow. Since these
thinner lines align nearly parallel to each other, we conclude
that the small interplug particle groups all move with nearly the
same average axial velocity down the pipe, independently of
the value of the solid fraction. Among these smaller groups, the
ones with the lowest (highest) values of packing fraction are
associated with the smallest (largest) values of mass flux—that
is to the thin green (red) lines—in the spatio-temporal diagram
of Fig. 1c. In other words, the left (right) tail of the probability
density distribution in Fig. 1d incorporates the flux due to the
small inter-plug particle groups with the lowest (highest) solid
fractions, whereas it is the flux due to plug flow that dictates the
expectation value of this distribution.

We have calculated f ( :m0) for different values of Df within
the range between 3.5 and 7.0. Fig. 2a shows the respective
distributions. We see that both the distribution width and
expectation value increase with the diameter ratio Df. Indeed,
for a given particle size and volume fraction, both the particle
number and average axial velocity—and thus also the average
mass flux—increase with Df. Also the distance between plugs
increases with the diameter ratio Df, which means that the
small inter-plug particle groups can accelerate the longer the
larger the pipe diameter.

Moreover, in Fig. 2b we see the time-averaged flux, that is
the expectation value Q0 = h :m0i, as a function of the pipe
diameter D as obtained from the simulations (circles). Note
that this mean flux can be written as Q0 = jA, where A = pD2/4 is
the area of the pipe cross-section and j = hvzirpVf is the average

Fig. 1 Granular flow through a pipe with Df = 4 (clogging regime). (a) Total
kinetic energy of the particles as a function of time; (b) and (c) spatio-temporal
images of the packing fraction and mass flux, respectively, along the tube; (d)
density distribution of the time-averaged mass flow. The slope of the line at
the lower right corner indicates the average axial velocity of the particles.
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flux density, with hvzi denoting the average axial particle
velocity. A scaling between hvzi and the pipe diameter D can
be obtained by noting that the average flow rate is dictated by
the behavior of grains within the plug zones.37 Each plug zone
is associated with the formation of an unstable arch, the height
of which should scale with D. Particles falling after the break of
an arch can accelerate freely due to the action of gravity thus

leading to a scaling of hvzi with
ffiffiffiffi
D
p

.37 Therefore, a scaling
of Q0 with D5/2 is expected. This scaling indeed governs the
mass flux of a granular material flowing out a silo through an
orifice of diameter D, which follows the well-known Beverloo
equation,20,37–42

Q0 ¼ Arp
ffiffiffi
g
p � ðD� kdÞ2:5; (7)

where the coefficients A and k must be determined from the
fit to the data. Such a scaling captures well the dependence of
the mass flux on the pipe diameter observed in our simula-
tions—the best fit to the simulation data is denoted by the
continuous line in Fig. 2b.

It is important to remark that, in the regime of small pipe to
particle diameter ratios Df investigated here, the distribution of
the flow along the pipe may be strongly affected by geometric

effects as the number of possible arrangements of the particles
along the cross section of the pipe affects the probability of the
formation of a stable arch (see Section 3.2). Such geometrical
effects may influence the width of the probability density
distribution curves in Fig. 2a as the value of Df is changed—for
instance, we see that for Df = 5.5 the distribution is narrower than
for Df = 6.0 and 5.0. However, we find that the mass flux increases
monotonically with Df as seen in Fig. 2b.

3.2 Jamming regime

The flow characteristics described above, with a constant
average particle velocity and the formation of density waves
along the pipe, persist over the entire simulation time, which
was larger than 1000 s (real time of the physical system), for all
values of Df 4 3. In agreement with previous studies,43,44 we
find that, for Df t 3, jamming occurs thus leading to complete
blockage of the granular flow. As an example of the flow in the
jamming regime, the spatio-temporal diagram of the packing
fraction for Df = 2.5 is shown in Fig. 3a. As we can see in this
figure, after about 1.8 s, a large, stable plug is formed, which
corresponds to the dark horizontal lines in the spatio-temporal
diagram. Indeed, this plug does not break up with the impact of
the smaller particle groups that fall onto it. In other words, the
frictional forces that yield the archs leading to plug formation3

are strong enough to sustain the downward pressure on the
granular column.

Our simulations show that, although the critical Df E 3.0
below which complete blockage occurs is robust with respect to
the filling volume of the particles relative to the pipe volume,
Vf, the time needed for the blockage to occur depends on this
parameter. To quantify this dependence, we perform 100
numerical experiments for each value of Vf using Df = 2.5
which is within the jamming regime. Fig. 3b shows the result-
ing normalized cumulative distribution of the number of
jammed simulations, njam, as a function of time.

We see that njam is shifted to the left as Vf increases, which
means that, statistically, the flow jams the earlier the larger Vf.
In order to collapse all curves, we first calculate the time t0 at
which njam becomes larger than 0.1%. This time is shown as a
function of Vf in the upper inset of Fig. 3c (circles). A fit to the
data using t0 = a0Vf

�2, denoted by the continuous line, gives
a0 E 0.012 s. The main plot of Fig. 3c shows njam as a function
of (t � t0)/t, where t is the time required for 50% of the
simulations with a given Vf to jam. As we can see in the lower
inset of Fig. 3c, this characteristic time (t E 1.6 s) is nearly
independent of Vf.

These results can be understood by noting that the jamming
probability increases with the probability that a stable arch
along the cross section of the pipe is formed (and thus with Vf).
This probability further depends on Df, which controls the
number of possible configurations of particle arrangements
along the cross-section of the pipe. For a constant Vf = 0.175,
we compute njam for different values of Df = 2.5, 2.6, 2.7, 2.8, 2.9
and 3.0 (see Fig. 4a). We see that for Df within the range
2.5 r Df r 2.9 the flow jams earlier the smaller Df, whereas
this trend of njam with Df is not obeyed by the curve

Fig. 2 Dependence of the mass flux on the pipe to particle diameter ratio
Df. The particle diameter is d = 1.2 mm. (a) Probability density distribution
of the mass flux for different values of Df. Symbols denote simulation
results, lines denote fits to the data using lognormal distributions; (b)
expectation value of the mass flux as a function of the pipe diameter D.
Circles denote simulation results, the solid line corresponds to the best fit
to these data using eqn (7), which gives A E 1.09 and k E 0.59, with
correlation coefficient R2 E 0.998.

Paper Soft Matter



This journal is©The Royal Society of Chemistry 2015 Soft Matter, 2015, 11, 4295--4305 | 4299

corresponding to Df = 3.0. The latter curve shows the largest
jamming times among all Df as shown in Fig. 4. To understand
these results we consider the two-dimensional arrangements
depicted in Fig. 4b–d. For Df = 2.9 (Fig. 4c) the probability of
stable arch formation is larger than for Df = 2.5 (Fig. 4b),
because in the former there is a higher probability to obtain a
particle chain with a larger inter-particle contact area and thus
a larger tangential force counter-balancing the particle weight.
However, a linear arrangement of the particles parallel to the
cross-section of the pipe can be obtained for Df = 3.0 (Fig. 4d),
which dramatically decreases the probability of stable arch
formation. Of course a much larger number of configurations

is possible considering Df 4 3.0 and three dimensional
arrangements. However, although we indeed did not observe
complete flow blockage for Df 4 3.0, the flow in this regime
is intermittent and characterized by density waves and inter-
mittent transport as discussed in Section 3.1 and demonstrated
previously.3,4

Therefore, in the following our aim is to develop a method to
homogenize the flow thus avoiding the formation of density
waves that lead to jamming in granular pipe flows.

3.3 Flow homogenization by means of helical inner-wall
texture

Experiments aiming at reducing erosion damage from slurries
in pipeline bends45 showed that pipes which encourage swirl
can get particles into suspension at lower pumping power and
pressure drop than a round duct. Inspired by this observation,
we investigate the vertical flow of a granular material down a
pipe of circular cross-section that has a helical inner-wall
texture as depicted in Fig. 5a. This texture is constituted of
small beads of diameter ds = D/10, which are fixed to the inner-
wall of the pipe and have the material properties listed in
Table 1. Each constituent bead is fixed to the wall at its center
such that half hemisphere of each bead is within the inner
volume of the pipe. The diameter of the pipe in the presence of
the helix is adjusted such that the total volume within the pipe
is the same as in the simulations without the texture elements.

Fig. 5b shows the spatio-temporal diagram of the packing
fraction for the flow within a pipe with Df = 2.5 and using the
same parameters as in the simulation of Fig. 3a. As we can see
jamming does not occur in such a pipe in the presence of the
helical texture. A steady downward flow of the granular material
is observed, whereas the particles are more homogeneously
distributed throughout the pipe compared to the simulations
without the helical texture. Such improvement is observed
without regard of the average radial velocity of the particles.
Indeed, in Fig. 6a and b we show the spatio-temporal diagrams

Fig. 3 (a) Spatio-temporal evolution of the solid fraction along the pipe
for Df = 2.5 (jamming regime) and Vf = 0.175. (b) Cumulative distribution
of the number njam of jammed simulations with Df = 2.5 (jamming regime)
as a function of time for different values of Vf; (c) njam as a function of the
rescaled time (t � t0)/t, where t0 and t are the times at which njam is equal
to 0.1% and 50%, respectively. The continuous lines in the upper and lower
insets denote fits to the simulation data using t0 = a0Vf

�2 and t = at, which
give a0 E 0.012 s, with correlation coefficient R2 E 0.98, and at E 1.6 s.

Fig. 4 (a) Cumulative distribution njam as a function of time for different
values of Df and for constant Vf = 0.175. Note that the time is in the
logarithmic scale; (b)–(d) show two-dimensional arrangements of particles
along the cross section of the pipe with diameter ratios Df = 2.5, 2.9 and
3.0, respectively.
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of the packing fraction without and with helix texture, respec-
tively, for the same pipe diameter but for an order of magnitude
larger initial radial velocity. We see that the thick dark lines in
the diagram of Fig. 6a are absent from the simulation with the
helix texture (Fig. 6b). The flow in the presence of the helix
takes place through smaller particle groups rather than
through large plugs as in the conventional duct. This result
can be understood by noting that, as the particles collide with
the beads fixed on the inner-wall, they are deflected to the
center of the pipe, thus hindering the formation of archs.
Moreover, collisions between particles and the beads of the
helix reduce the average axial velocity of the particles, whereas
an increase in the mean radial velocity is observed (cf. Fig. 6c
and d). Therefore, by introducing the helical texture of Fig. 5a,
jamming can be prevented at the cost of a lower rate of particle
flux down the pipe.

We find that the average mass flux depends significantly on
the wavelength of the helix, l. To illustrate this dependence, the
spatio-temporal plots of the solid fraction for different values of
l obtained in a simulation with Df = 3.5 (which corresponds to
the clogging regime described in Section 3.1) are shown in
Fig. 7. We see that the thick lines associated with the plugs in
Fig. 7a give place to an increasingly more homogeneous flow as
l decreases (cf. Fig. 7b–d). From the slope of the lines in the
different spatio-temporal diagrams, we also see that the average

particle axial velocity increases with l. This result can be further
seen from Fig. 8, which shows the probability density functions
f ( :m0) of the mass flux :

m0 (cf. Section 3.1), for different values of
l. As l decreases, f ( :m0) approaches a Gaussian shape, that is, it
becomes more symmetric, while the expectation value Q = h :m0i
of the mass flux also decreases.

Fig. 5 (a) Flow of granular particles (blue) through a vertical pipe with
Df = 2.5 to which the helical inner-wall texture (constituted by the red
beads) is applied. The initial maximal radial velocity is vmax

r = 0.01 m s�1 as
in Fig. 3; (b) corresponding spatio-temporal diagram of the solid fraction
along the axial position. The slope of the line at the lower right corner
indicates the average axial velocity of the particles.

Fig. 6 Granular flow through a pipe with Df = 2.5 and vmax
r = 0.1085 m s�1.

(a) Spatio-temporal plot of the solid fraction along the pipe without helix; (b)
same plot for simulation with the helix; corresponding average values of the
radial (c) and axial (d) velocities along the pipe, hvri and hvai, respectively. The
slope of the line at the upper right corner in each plot indicates the average
axial velocity of the particles.
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In order to quantitatively describe the effect of the helix
wavelength on the mass flux, we first note that in the steady-
state, the gain in momentum of the particles due to gravity is
fully compensated by the momentum loss due to collisions
with the inner-wall of the pipe as well as with the other
particles. In the presence of the helix, there is an additional
contribution to the rate with which axial momentum is dis-
sipated. This contribution, :pdiss,helix, is due to collisions of the

particles with the beads composing the helix. It is reflected by a
relative decrease in the magnitude of the steady-state axial
velocity of the particles, compared to the value without helix,
as depicted in the example of Fig. 6d. Therefore, the steady-
state flux Q in the presence of the helix is related to the flux Q0

without helix through the expression

Q = Q0 � Qdiss,helix, (8)

where Qdiss,helix is the amount by which the steady-state axial
mass flux is reduced when the helical texture is present.

In the small pipe to particle diameter ratio investigated here,
it is reasonable to assume that the average mass flux in the axial
direction is proportional to the average axial momentum of the
particles, and that Qdiss,helix is nearly proportional to :

pdiss,helix.
As a result of particle-helix collisions along the pipe, the
particles are deflated to the central axis of the pipe which is
why there is an increase in the average radial momentum when
the helix is present (see Fig. 6c). However, we note that due to
symmetry, for any radial direction, the contribution of the
collisions to increase the radial momentum at the upper half
of one helix wavelength is the same as at the lower half. For a
given pipe diameter D and a helix wavelength l made up of ns

beads, the collisions between particles with ns/2 beads from
the upper and lower hemispheres (half-wavelengths) deflate the
particles in opposite directions. We thus need to calculate the
rate with each the particles gain radial momentum due to
collisions with one single hemisphere. The total rate is then
twice the contribution from one half-hemisphere.

Fig. 9 presents both hemispheres unravelled from the inner-
wall as two right triangles, each with legs D and l/2. Note that
l/2 is the length corresponding to ns/2 beads, which is the
contribution of each hemisphere to increase the radial momentum
along the cross section of the pipe. Moreover, the rate of axial
momentum dissipation due to each hemisphere must scale with
p>, the component of the particles’ average axial momentum p0

perpendicular to the hypotenuse of each triangle. Each of both
hypotenuses in Fig. 9 encompasses ns/2 beads corresponding to one
helix half-wavelength. Therefore, :pdiss,helix p 2p> = 2p0 sin[YD,l/2],
where YD,l/2 = arctan[pD/(l/2)] (see Fig. 9). Following our

Fig. 7 (a) Spatio-temporal plots of the solid fraction along a pipe with
Df = 3.5 and without helix; the subsequent figures show the same plots for
simulations with a helix of wavelength l = 1 m (b), 50 mm (c) and 12.5 mm
(d). The slope of the line at the upper right corner in each plot indicates the
average axial velocity of the particles.

Fig. 8 Probability density distribution of the mass flux through a pipe with
Df = 3.5 (that is, pipe diameter D = 4.2 mm) for different values of the helix
wavelength l.
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assumption that Qdiss,helix should be proportional to
:pdiss,helix, we can write Qdiss;helix � 2bQ0 sin½arctan½pD=ðl=2Þ�� ¼
2bQ0 � 2pD

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ð2pDÞ2

ph i
, where b is a parameter that

encodes information on the dissipative properties of the
collisions. Thus, from eqn (8),

Q

Q0
¼ 1� B � 2pDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ ð2pDÞ2
p
" #

; (9)

where Q0 is the flux without helix and the constant B = 2b
encodes information on energy dissipation due to collisions
with the helix. Thus, the value of B should depend on the
material properties and particle diameter. To verify eqn (9), we
compute the expectation value of the flux, Q =

Ð
q fl(q)dq as a

function of l, where fl(q) is the probability density function
associated with the wavelength l as shown in Fig. 8. The result
of this calculation is denoted by the symbols in the main plot of
Fig. 10b, in which Q appears rescaled with Q0. The continuous
line denotes the best fit using eqn (9), which gives B E 0.74. As
we can see from this figure, the agreement between eqn (9) and
the simulation results is excellent.

The inset of Fig. 10b shows the rescaled standard deviation
of the flux, s/s0, as a function of 1/l, where s0 is the standard
deviation obtained in the simulations without helix. The value
of s/s0 gives a measure of the homogeneity of the flux along the
pipe—the smaller s the more homogeneous the flux. By fitting
the simulation data using the equation

s
s0
¼ 1� C � 2pDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ ð2pDÞ2
p
" #

; (10)

we obtain C E 0.9. This fit is denoted by the continuous line in
the inset of Fig. 10b. Therefore, both the flux and its standard
deviation can be obtained from the geometric parameters of the
helix using eqn (9) and (10), respectively.

Moreover, from eqn (9) we obtain a modification of the
Beverloo equation (eqn (7)) for the flow of particulate materials
in a vertical pipe of diameter D in the presence of a helix of

wavelength l. By replacing Q0 in eqn (9) by the right-hand-side
of eqn (7), we obtain,

Q ¼ Arp
ffiffiffi
g
p ðD� kdÞ2:5 � 1� B � 2pDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ ð2pDÞ2
p
" #( )

: (11)

The circles in Fig. 11 show the mass flux as a function of the
pipe diameter obtained for a constant helix wavelength l =
25 mm. The corresponding fit to the simulation data using
eqn (11) is shown by the continuous line and gives A E 4.2, k E
1.13 and B E 1.05. We see that the agreement with the data is
very good. However, obviously eqn (11) can only be valid for the
regime of small pipe to particle diameter ratios investigated
here. Indeed, the fit in Fig. 11 shows a maximum at Df E 6.5,
and predicts negative flux values for Df \ 10. Moreover, as
l - 0 the flux through the pipe must follow the original
Beverloo equation with Q0 corresponding to a pipe with no
helix and diameter D � ds, where ds is the size of the spheres
constituting the helix. Further work is thus needed in order to
elucidate the dependence of the coefficients A, B, C and k on the

Fig. 9 Schematic diagram displaying the average axial momentum p0 and
the equivalent angle YD,l/2 � arctan[pD/(l/2)], which dictates the energy
dissipation over one helix wavelength due to collisions with the ns/2 beads
composing one half-wavelength of the helix. The component p> =
p0 sin[arctan[pD/(l/2)]] is also indicated. The horizontal arrows along the
helix indicate the direction from the helix to the central axis of the pipe.

Fig. 10 (a) Snapshots of simulations without helix and with helix of
wavelength values l = 25 mm and 6.25 mm (from top to bottom). Df =
3.5 and in the figures a 70 mm long excerpt of the pipe is shown. The small
particles composing the helix are coloured black and there are 44 of such
particles per helix wavelength; (b) main plot: expectation value of the mass
flux Q as a function of 1/l, where l is the helix wavelength and the
parameters are the same as in Fig. 8. The flux is rescaled with Q0 E
7.4 � 10�3 kg s�1 which corresponds to the calculation with no helix, or
equivalently l - N. The continuous line corresponds to the best fit to the
simulation data using eqn (9), which gives B E 0.75. Inset: non-dimensional
standard deviation s/s0 as a function of 1/l, where s0 E 2.5 � 10�4 kg s�1 is
the value of s with no helix. The continuous line denotes the best fit to
eqn (10), which gives C E 0.9 with correlation coefficient R2 E 0.983.
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number of helix beads per wavelength l, as well as on the
frictional and dissipation properties of the particles.

Our results raise the question whether other inner-wall
texture geometries have a similar effect as the helical one. We
thus perform simulations using Vf = 0.15 and Df = 2.5 with the
helix geometry as well as with three further alternative textures
(Fig. 12).

The first of these alternative geometries consists of rings
disposed perpendicularly to the transport direction along the
pipe axis and with spacing equal to l. Each ring is made of the
same type of beads that form the helix, and the number of beads
in a ring is equal to the number of beads in one wavelength of
the helix (Fig. 12a). The spatio-temporal diagrams obtained with
the helix and with the rings are shown in Fig. 13a and b,
respectively. We see that the texture made of rings does not
favour steady flow in vertical pipes as does the helical one.
Directly on top of each ring there occurs accumulation of
particles and the formation of dense plugs which can lead to
stable archs thus eventually causing blockage of the flow.

The second alternative geometry consists of disposing
the constituent beads of the texture randomly over the entire

inner-wall surface of the pipe (Fig. 12b). Hereby the same total
number of constituent beads as in the helical texture is applied.
By comparing the corresponding spatio-temporal diagram
(Fig. 13c) with the one associated with the helix (Fig. 13a), we
see that the latter texture geometry yields a larger particle
flux—the particle axial velocity for the helix geometry is
0.71 m s�1, while for the random texture it is 0.39 m s�1.

Fig. 11 Expectation value of the mass flux as a function of the pipe
diameter D for simulations using a helical inner-wall texture with l =
25 mm. The particle size is d = 1.2 mm and the solid fraction Vf = 0.15 is
the same as in Fig. 2 (which considers simulations with no helix). Circles
denote simulation results, and the continuous line denotes the best fit to
these data using eqn (11), which gives A E 4.2, k E 1.13 and B E 1.05, with
R2 E 0.976.

Fig. 12 Alternative texture geometries: (a) rings, (b) randomly distributed
and (c) vertically aligned beads fixed on the inner-wall of the pipe. The
number of particles constituting the different textures is the same as for a
helical texture of wavelength l = 23 mm.

Fig. 13 Spatio-temporal plots of the solid fraction along the pipe for
different types of inner-wall textures: (a) helix, (b) rings, (c) randomly
distributed beads on the pipe inner-wall and (d) beads forming a single
line that is parallel to the pipe axis. The slope of the line at the upper right
corner in each plot indicates the average axial velocity of the particles.
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Finally, in the third alternative geometry the particles are
arranged into a vertical line fixed on the inner-wall over the
entire tube length (Fig. 12c). The spatio-temporal diagram of
the simulation using such a texture, shown in Fig. 13d, displays
the occurrence of dense plugs and inhomogeneous flow. Over-
all, the flow using the texture geometry in the form of a helix or
using beads disposed randomly along the pipe is more homo-
geneous than the flow using the linear texture geometry.

Based on the results of our simulations, we conclude that
the alternative textures are inferior to the helical inner-wall one
since they lead either to inhomogeneous flow or to smaller
mass flux values.

4 Conclusions

In conclusion, we have presented a method to obtain steady
flows of granular materials through narrow pipes, which con-
sists of applying a helical texture to the inner wall of the pipe.
In the presence of such a texture, particle impingements are
more homogeneouly distributed along the pipe, which substan-
tially reduces the solid fraction fluctuations that are inherent to
particulate flows through narrow channels. Our simulations
show that, by tuning the wavelength of the helix, it is possible
to achieve flows with prescribed transport characteristics.
Specifically, we have shown that the mass flux in the presence
of the helix can be predicted as a function of the pipe diameter
and helix wavelength using an expression that is a modification
of the well-known Beverloo equation with only one additional
fit parameter. Excellent quantitative agreement between the
values of mass flux predicted from our expression with the
mass flux values obtained from simulation results was found.

To the best of our knowledge, there is no direct experimental
evidence of the effect of a helical inner-wall texture on the flow
of granular materials in vertical pipes, the present results could
be compared to. However, as stated before, it was already
shown experimentally that erosion damage from granulates
in fluid flow through pipeline bends can be diminished by using
helically-formed pipes, because such pipes, which encourage
swirl, lead to a more homogeneous particle concentration.45

The helical inner-wall texture provides a means to homo-
genize the flow along the entire pipe without the need for energy
input from any external source. In fact, previous methods to
obtain steady granular flows were either based on energy input
to the system, e.g. through electric fields or mechanical perturba-
tions,1 or designed to prevent the blockage at the end of silos by
adding an obstacle near the flow outlet.20 Our method has proven
to be efficient to prevent the formation of density waves which are
inherent to the flow of granular materials through pipes and
occur without regard of the pipe to particle diameter ratio. We
remark that the density waves in vertical pipe flows occur at low
packing fraction values and that the necessary condition for
jamming in such flows is the formation of a stable plug that does
not break due to collisions of particles falling upon it thus leading
to flow blockage and formation of a stable column. This mecha-
nism is thus different from the shear-jamming mechanism where

a dense granular system, which is already close to its highest
packing fraction associated with the jammed stated, is driven to a
shear-jammed state by application of a shear stress at constant
density.46–49

We believe that application of the helical texture presented
here could be used to enhance not only gravity-driven pipe
flows but also fluid-driven particle transport both through
vertical and horizontal pipes,18,50 which remain to be investi-
gated in the future. It would be thus interesting to perform
experiments on vertical or horizontal pipe flows that include a
helical inner-wall texture to verify the predictions from our
numerical simulations.
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