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Simulation vs experiment

Energy loss

A granular dampening device utilizes inelastic collisions between particles to dissipate energy. 
These devices are easy to construct and require no maintenance. 

To get a better understanding of how to optimize granular dampeners, an experiment (1) was 
set up using an inverted pendulum and a box filled with granulate attached to its top. In the 
microgravity phase of a parabolic flight the pendulum is set in motion. The box is recorded with 
a high speed camera and data is extracted using image processing techniques. The 
experimental data is then compared against event-driven granular-dynamics simulations (2).

In the event-driven simulations, hard spheres and a harmonically oscillating box are used to 
model the experimental system. The frequency of the box oscillations and the inelasticities are 
unknown and are obtained by fitting to the smallest box size studied (50x50x40mm). Predictions 
can then be made for the behavior of the larger box sizes and further measurements, which are 
inaccessible experimentally, are taken. 

• Thanks to the rest of the parabolic flight crew: 
M.Heckel, P.Müller, A.Sack & C.Krülle
• More dampening data was recorded using a 
newly developed device (3)  

(1) M.N. Bannerman, R. Sargant, L. Lue, "An O(N) general event-
driven simulator: DYNAMO," J. Comp. Phys., (2009)
(2)  M.N. Bannerman, J.E.Kollmer, A.Sack, et al. “Movers and 
Shakers: Granular Damping in Microgravity”, submitted (2010)
(3)Achim Sack, 'Displacement sensor using a Hall position 
encoder', Poster (2009)

The following graphs show a comparison between the experimental data (black lines), a 
analytical model in form of a frictionally damped oscillator (blue lines) and MD-
simulations (red lines). The upper half shows the elongation of the pendulum as a 
function of time, the lower half shows the position of the center of mass of the granulate. 
Experiment and simulation show an excellent agreement. 

From the simulation we can calculate the total energy of the system as well as the energy flux. 
The peak amplitude of the box motion is proportional to the square root of the energy of the 
box. Both appear to decay linearly in time.

MD-simulation ExperimentOverview
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The optimal box length for the system studied is predicted to be Lopt = 311 mm. A simulation 
performed at this optimal box length (see below) displays very high dampening when compared 
to the shorter box lengths (note the change of scale).
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End wall energy fluxes, 104mm box 
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104mm phase shift comparison

The dampening of the oscillator is dependent on a phase shift occurring between the motion of 
the oscillator and the granulate contained inside. At an optimal phase shift, the granulate hits 
the wall with the maximum relative velocity and more energy is lost. This graph shows the 
motion of the oscillator compared to the motion of the granulate for simulation (upper graph) 

and from the experiment (lower graph). Again an 
excellent agreement is observed. The granulate 
motion is clearly out of phase, even for the smallest 
box length. To optimize the dampening effect, the 
relative velocity of granulate and box should reach 
a maximum at the time of the first collision. First, 
the centre of mass velocity of the granulate at the 
end of the inward part of the first stroke is assumed 
to be, on average, the maximum plate velocity at 
the centre of the oscillation length. The optimal box 
length for a given initial amplitude and frequency of 
oscillation can then be estimated using

L
opt

= ��0

r
M

M +Nm
+ ⇥

layer
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Nonlinear Dynamics 
of Complex Continua

Simulation results for the box and granulate (a) position, 
and (b) velocity as a function of time for the predicted 
optimal box length of L = 311 mm.

Simulation results for the time t to dissipate a percentage of the 
initial energy, versus the box length L. The vertical dashed line 
indicates the optimal box length as predicted
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Outlook
The predicted optimal damper length needs to be verified experimentally and the influence of 
the container geometry on the particle collision rate has to be investigated. Further research 
on experimental systems is also is required to determine the frequency dependence of 
granular dampers and generalize the current model to these systems. For this a new 
experiment will be conduced in March 2011 as part of ESAʼs 54th Parabolic Flight Campaign.
Concerning applications, the idea is to construct materials containing granulate filled cavities 
as a way to produce self dampening materials. 

Poly-directional Stability of Granular Matter
F. Zimber, J. E. Kollmer and T. Pö ̈schel

Rotating Drum Experiment

Recurrent Inflation & Sudden Collapse

Rate Model

Reversal of Rotiation & Polydirectional Stability
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By means of a rotating drum experiment, we introduce the state of poly-directional stability in jammed granular matter where the material responds elastically 
to small stresses in a wide angular interval. Only to small stresses which are directed in a relatively small interval of directions the material responds by 
plastic deformations. The state of poly-directional stability complements the fragile [1] state, where the material responds elastically to small applied stresses 
only in a certain direction but even very small stress in any other direction would lead to plastic deformations. Similar to fragile matter, poly-directionally 
stable matter is created in a dynamic process by self-organization.

Volume fraction as a function of time in the steady state. Left: the total volume of the material 
varies by about 2% due to inflation in the steady flow regime and collapses. Right: the same date 
for a shorter interval showing the inflation as a linear function of time.

Cumulative velocity field during a collapse obtained by PIV. The vector arrows are magnified 
for better visibility. The region of non-vanishing velocities indicate the volume affected by the 

Normalized frequencies of intervals between consecutive collapse events found in the experiment 
(points). Almost no collapses occur until the cylinder is rotated by about 60° after the preceding 
collapse. The solid line show the probability density based on the rate model. The rate is sketched 
by the dotted line (right axis).

Slow rotation (1/7 RPM) creates a stationary state that is characterized 
by a steady narrow flow (no stick-slip) of grains downhill the free 
surface  interrupted by sudden collapses of the sediment.

From the trapezoidal shape of the collapsed volume we can compute the 
density ratio of dilute and collapsed material:

a)

b)

The mass of low density material located 
in the triangle △(B,Gd) collapses into the
triangle △(B,Gc) and thus

Similarly, the material contained in the 
rectangle ☐(B,Hd) collapses into ☐(B,Hc)

and agrees well with the PIV result.

Generally we observe that collapse events are always restricted to the 
right side of the cylinder, thus material rotated by less than 90°- 𝜑R is 
always 

In the interval 0 ≤ Θ ≤ 60° after a collapse event we find almost no 
collapses, followed by a peak at Θ ≈ 80°. This means that the lose material 
is stable in the corresponding orientation. We model the system’s behavior 
by a rate model assuming that for Θ < Θ0 the dilute material is stable and 
insensitive to small perturbations which are always present when the 
cylinder is rotated. For Θ > Θ1 the material is oriented such that it left its 
angular range of stability and even a small perturbation may cause a 
collapse.

3

FIG. 4: Cumulative velocity field during a collapse obtained by PIV.
The vector arrows are magnified for better visibility. The region of
non-vanishing velocities indicate the volume which is affected by
the collapse. The overlayed trapezoidal shape is obtained from our
model calculation and agrees well with the experimental data.

pare the trapezoidal difference volume shown in Fig. 3b with
the putative collapsed volume, sketched in Fig. ??. The mass
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With �H ⇡ 5.7mm from Fig. 3 we obtain H
d

⇡ 102.1mm
FZ:: 102.1mm which agrees well with the PIV results (see

green bottom of the trapezoidal shape shown in Fig. 4) sup-
porting our hypothesis.

The difference of more than 6% between the density of the
collapsed state and the loose state may surprise, given that for
spheres the difference between the packing fraction of random
lose packing, ⇢RLP ⇡ 0.55, [18] and random close packing,
that is, the densest non-crystalline state, ⇢RCP ⇡ 0.64 [19, 20]
is about 15% [27]

As a general feature found in all collapse events analysed
by PIV we notice that the region of densification is always re-
stricted to the right hand side of the cylinder, that is, lose ma-
terial which is rotated by less than 90

o�'
R

⇡ 52

o FZ:: 52o
was always found stable. Thus, after a collapse event, the re-
gion right of the cylinder’s axis is collapsed, ⇢

c

, while left of

the axis the material is in dilute state, ⇢
d

. Therefore, for the
following we measure the rotation angle, ⇥, with respect to
the vertical line.

Instability of Packings. We analyze the series of collapses
with respect to the distances between consecutive collapse
events and obtain the histogram shown in Fig. 5.
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FIG. 5: Normalized frequencies of intervals between con-
secutive collapse events found in the experiment (points).
Almost no collapses occur until the cylinder is rotated by
about 60o after the preceding collapse. The solid line show
the probability density, p(⇥), Eq. (5), based on the rate
model, Eq. (4), sketched by the dotted line (right axis).
TODO: lower case, legende: experiment, theory, Eq. (xxx)

In the interval 0  ⇥ . 60

o after a collapse event we find
almost no collapses, followed by a peak at ⇥ ⇡ 80

o. This
means that the lose material, ⇢

d

, is stable (insensitive with re-
spect to small perturbations) in the corresponding orientation.

We model the system’s behavior by a rate model,

r
c

(⇥) =

8
><

>:

0 for 0  ⇥  ⇥0

r0
⇥�⇥0
⇥1�⇥0

for ⇥0  ⇥  ⇥1

r0 for ⇥ � ⇥1

(4)

assuming that for ⇥ < ⇥0 the dilute material is stable and
insensitive to small perturbations which are always present
when the cylinder is rotated. For ⇥ > ⇥1 the material is
oriented such that it left its angular range of stability and
even a small perturbation may cause a collapse. The inter-
vall (⇥0,⇥1) demarcates a small transition region where the
material gradually loses its stability. Using the rate r

c

(⇥), we
can compute the probability density for the next collapse event
occurring at the angle ⇥ after the preceding collapse.

p(⇥) =

8
><

>:

0 for ⇥ < ⇥0

r0 exp
⇣

r0
2

(⇥�⇥0)
2

⇥1�⇥0

⌘
⇥�⇥0
⇥1�⇥0

for ⇥0  ⇥ < ⇥1

r0 exp
�
r0
2 (3⇥1 �⇥0)

�
for ⇥ � ⇥1

(5)

3

FIG. 4: Cumulative velocity field during a collapse obtained by PIV.
The vector arrows are magnified for better visibility. The region of
non-vanishing velocities indicate the volume which is affected by
the collapse. The overlayed trapezoidal shape is obtained from our
model calculation and agrees well with the experimental data.
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FIG. 5: Normalized frequencies of intervals between con-
secutive collapse events found in the experiment (points).
Almost no collapses occur until the cylinder is rotated by
about 60o after the preceding collapse. The solid line show
the probability density, p(⇥), Eq. (5), based on the rate
model, Eq. (4), sketched by the dotted line (right axis).
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Reversal of the rotation. To confirm our hypothesis on the wide angle of 
structural stability we reverted the sense of the rotation in the following 
way: We waited for a collapse-free interval long enough that we can 
expect that all material in the container is in the dilute state. At this point 
(Θr = 0) we restarted the rotation in opposite direction. The surface flow 
restarted in the opposite direction when the material surface reached 
again the angle of repose, and the first collapse event was observed at  
Θr ≈ −225.7°. Consequently, in this experiment we found a new state of 
dilute jammed granular matter which is stable against small perturbation 
in a wide angular interval of small stresses whereas it responds plastically 
when loaded with stresses outside this interval.

[1] M.E.Cates, J.P.Wittmer, J.-P.Bouchaud, and P.Claudin, Phys. Rev. Lett. 81, 1841 (1998)

            stable. We analyze the series of collapses with respect to the 
distances between consecutive collapse events and obtain the histogram 
below:

which gives
Overlay of the images taken immediately 
before and after a collapse. The image prior 
to the collapse is drawn in reverse gray 
scale, αd and αc indicate the slope of the 
surface before and after the collapse.


