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Abstract. The oscillation of a spring may be attenuated by means of a granular
damper. In difference to viscous dampers, the amplitude decays nearly linearly in
time up to a finite value, from there on it decays much slower. We quantitatively
explain the linear decay, which was a long-standing question.
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1. Introduction

When a container partly filled with granular material is agitated by an oscillating spring,
energy of the spring is transferred to the particles and dissipated due to inelastic collisions
of the particles with one another and with the container, resulting in attenuation of the
amplitude of the oscillation. This is the basic principle of granular dampers which are used
in a number of technical applications, such as mechanical tools and machinery [1–6], metal
cutting machines [7], turbine and compressor blisks [8, 9], sports equipment [10, 11], vibrating
antennae [12–14], bonding machines [15] and had also been proposed to reduce vibrations of
the space shuttle engine [16, 17].

While the amplitude of a linearly damped harmonic oscillator decays exponentially in time,
the amplitude of a vibrating spring with an attached granular damper decays almost linearly in
time up to a certain value. From there on, the amplitude decays much slower. This linear decay
was reported in many references based on both experimental work, e.g. [15, 18–22], and particle
simulations, e.g. [23–26]. Similar results apply also to impact dampers, e.g. [27–30].

The aim of this paper is to explain the two regimes of granular damping of a spring, that
is, linear attenuation of the amplitude followed by a period of weaker damping which is a long
standing problem. We will show that this behavior may be attributed to different collective
modes of dynamics of granular matter in an oscillating box. For our investigation we wish
to exclude the influence of gravity on the dynamics of excited granular matter and, thus, on
granular damping [21, 31–36]. Therefore, we refer to recent experiments on granular damping
under conditions of microgravity [37].

2. Linear decay of the amplitude

Figure 1 shows the decay of the amplitude of a spring’s oscillation with an attached granular
damper. Similar figures can be found in many publications on granular damping [15, 18–30]
which have three characteristic features in common: (a) for large amplitude, the decay follows
an almost linear function of time; (b) for small amplitude (large time) the decay is weak
and (c) there is a rather sharp transition between both regimes. In our case, the figure shows
the attenuation of a flat spring where the granular damper is a rectangular polycarbonate
container of mass M = 434 g and length L = 4 cm in the direction of vibration and cross section
5 × 5 cm2, mounted on top of a flat spring (k = 24.4 Nm−1) and loaded with 37 steel balls
(diameter 1 cm, total mass m = 149 g). In its initial position, the container is deflected by about
x(t = 0) = A0 = 11 cm. The time dependent position, x(t), was recorded by means of a high-
speed camera. The experiment was performed during a parabolic flight under conditions of
microgravity, for details see [38].

3. Modes of excitation

From the high-speed video recording, we notice a transition of the dynamical behavior of the
granulate at the same time, t∗, when the mode of the attenuation changes. To describe the
dynamical modes we first look at an externally driven system, that is, the container follows
a sinusoidal motion at fixed amplitude and frequency, figures 2(a)–(e). To obtain each subfigure
of figure 2 we computed for each frame of the high-speed recording the average gray value in
the plane perpendicular to the oscillation. This way, each frame was condensed to a single line.
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Figure 1. Typical attenuation of a linear spring damped by a granular
damper [38]. Two regimes are separated by a rather sharp transition at time t∗

≈

11 s. The linear decay (dashed line) for t < t∗ was reported in many publications,
e.g. [15, 18–30].

Figure 2. Modes of excitation of the granulate in a vibrating container, obtained
from the high-speed recording of the oscillating box during one period (see
text). (a)–(e) Each sub-figure shows the granulate moving in a box sinusoidally
driven at constant amplitude A. (f) The granulate moves in a box attached
to an oscillating spring for time t = 0–5 s. The corresponding decay of the
amplitude over time is shown in figure 3(c). For better visibility, the position
of the container (also obtained from the video data) is highlighted in color.

These lines were stacked-up to give an image of the flow of granulate during the oscillatory
motion. For large amplitude, A(t), see figures 2(a)–(c), the particles move collectively as a
cluster and arrive at the wall at a phase of oscillation when the wall is accelerating inwards, i.e.
toward the colliding particles. This way, the particles arriving at the incoming wall are collected,
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and accelerated in a compact state toward the opposite wall where they arrive again collectively.
This mode of behavior was termed collect-and-collide regime [38].

For small amplitude, figures 2(d) and (e), we do not observe collective motion of the
granulate. In this regime, the granulate adopts a gaseous state, occupying the entire volume of
the container nearly homogeneously. Note that these two states, collect-and-collide and gaseous,
are also found in numerical simulations [35] as extremal states of granular dynamics. It was
shown recently [37] that the loss of mechanical energy due to dissipative particle collisions is
fundamentally different in both regimes of dynamical behavior.

Comparing the dynamics of the granulate in the driven system at fixed amplitude,
figures 2(a)–(e), with the dynamics in a container attached to a spring where the amplitude
is a decaying function of time, figure 2(f), we observe very similar modes. For large amplitude,
A > A∗ (corresponding to t < t∗) the granulate shows collect-and-collide dynamics; for A < A∗

(corresponding to t > t∗) it behaves like a granular gas. This similarity is not trivial since à priori
it cannot be excluded that there is a long lasting transient state separating the collect-and-collide
regime from the gaseous behavior. Comparing figures 2(a)–(e) with figure 2(f), we conclude that
the transition time, t∗, identified in figure 1 as the time when the relaxation process changes its
mode, corresponds to the transition of the granulate’s dynamical behavior in the box from the
collect-and-collide regime to a gaseous state.

4. Linear relaxation of a damped spring

The similarity of the granulate’s dynamical modes for the cases of external agitation at constant
amplitude and with decaying amplitude suggests to consider the relaxation as a sequence of
steady-states. This is certainly justified if the relaxation time is much larger than the period of the
oscillation. We will see below that the results obtained under this conditions stay approximately
correct also beyond this limit.

Initially, the total energy of the system is E0 = k A2
0/2, where k is the elastic constant

of the driving spring and A0 is the initial elongation of the oscillator from its equilibrium
position, A0 = x(t = 0), see figure 1. Following the arguments above, in the collect-and-collide
regime, the granular material behaves essentially like a single particle which collides perfectly
inelastically with the container wall. That is, twice per period, the granulate collides with the
wall and loses its velocity relative to the container. The corresponding loss of mechanical energy
leads to the attenuation of the amplitude A(t).

To quantify A(t), we look at the dynamics of the system during one half period in
the collect-and-collide regime, starting at x = 0, ẋ > 0 which we attribute to the time τ = 0.
Consider first the case of external sinusoidal driving at constant amplitude, x(τ ) = A sin(ωτ).
At time τ = 0, that is, x = 0, the container travels at maximum velocity Vmax = Aω. At this
time, the granulate is accumulated at the back wall of the container due to the preceding inward
stroke and moves at velocity v = Vmax synchronously to the container. At this point, x = 0, the
granulate decouples from the container. The container is decelerated, V = Aω cos(ωτ), while
the granulate continues moving at velocity v. The granulate collides with the opposite wall
of the container at time τc after the container reached the maximal elongation, x = A at time
τ = π/2ω, (see figure 2(b)) being a condition for the stability of the collect-and-collide regime,
see [37] for a detailed discussion. The time of collision, τc, is obtained from the distance traveled
by the granulate at velocity v and the harmonic motion of the container:

vτc = Aωτc = A sin(ωτc) + Lg, (1)
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where the clearance, Lg, is the difference between box length and the thickness of the packed
layer of particles in the box. That is, Lg is the distance traveled by the granulate during one
stroke, relative to the container. The velocity of the box at the time of impact is then given by
Vc = Aω cos(ωτc).

Let us now discuss the case of the oscillator driven by a spring. Here, ω is the native
frequency of the spring with the attached container. We checked that (a) during the entire process
of attenuation the shape of the oscillation is almost perfectly sinusoidal, x(t) = A(t) sin(ωt),
and (b) the frequency, ω, is independent of the amplitude. This observation allows to consider
the frequency as a system parameter. In the experiments discussed here, we determined ω =

2π × 1.05 s−1.
In order to derive an equation for the attenuation, A(t), first we note that during the entire

interval, τ ∈ (0, τc), the container moves decoupled from the granulate, therefore, we equate the
kinetic energy of the container of mass M at x = 0 and the potential energy of the spring at
maximal elongation at x = A:

k

2
A2

=
M

2
v2 (2)

to obtain the velocity of the granulate when it decouples from the container, v = A
√

k/M .
When the container and the granulate of total mass m collide at velocities Vc and v perfectly

dissipatively such that the postcollisional relative velocity vanishes, the dissipated energy is

Ediss = −
1

2
meff(Vc − v)2 with meff =

mM

m + M

= −
1

2
meff

[
Aω cos(ωτc) − A

√
k

M

]2

. (3)

The dissipation of energy leads to attenuation of the amplitude A of the container’s oscillation

Ediss =
k

2

[
A2

(
t +

T

2

)
− A2(t)

]
, (4)

where the argument t + T/2 takes into account that the energy Ediss is dissipated in half of the
period of oscillation, T = 2π/ω. With the assumption that T/2 is small as compared to the
characteristic relaxation time of the oscillation, we write

Ediss ≈
kπ

ω
A(t)

dA

dt
. (5)

From equations (3) and (5) we obtain an equation for the attenuation of the amplitude, A(t):

γ
dA

dt
= −A(t)

ωmeff

2πk

[
ω cos(ωτc) −

√
k

M

]2

(6)

with the initial elongation A(t = 0) = A0. The amplitude A enters the rhs via τc since the
argument of the cosine function is the solution of

ωτc = sin(ωτc) + Lg/A. (7)
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Figure 3. Relaxation of an oscillating spring with attached granular damper for
different values of the clearance, Lg. The green lines show the amplitude, A(t),
obtained from the numerical solution of equation (6). The dashed lines indicate
the residual amplitude, Ar(Lg), given by equation (9). The time of transition, t∗,
follows from the initial slope, −dA/dt|t→0 and Ar.

The factor γ was introduced in the lhs of equation (6) to compensate for additional losses
of energy due to the inherent damping of the driving spring. For our system, we found the best
agreement between the experiment and the numerical solution of equation (6) for the value
γ = 0.85. Figure 3 shows the oscillation of the damper found in experiments together with the
numerical solution of equation (6) for different values of the clearance, Lg.

The residual amplitude, Ar, corresponds to the transition from the collect-and-collide mode
into the gas regime: a condition for the collect-and-collide regime is that the incoming particles
meet the wall when it moves accelerated toward them [37]. This is the case for ωτc < π .
Otherwise, the particles cannot be collected but are immediately scattered back when they
(individually) arrive —collect-and-collide is not possible, see figure 2(f) at t ≈ 4 s. From the
first order expansion of equation (7) around ωτc = π we obtain

ωτc =
π

2
+

Lg

2A
, (8)

which relates the condition ωτc < π to the residual amplitude

Ar
=

Lg

π
(9)
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Figure 4. Residual amplitude, Ar, as a function of the clearance, Lg, obtained
from the solution of equation (6) (full line). The efficiency of damping is
characterized by the initial slope of the amplitude, −

dA
dt

∣∣
t→0

(dashed line).

where the collect-and-collide regime ceases. The dotted line in figure 3 shows Ar due to
equation (9) for our experiments. In all cases, the theoretical value of Ar appears to be too
pessimistic, that is, the model description stays valid beyond the limit given by equation (9).

Obviously, the initial slope of the almost linear decay of A(t), characterizing the efficiency
of damping, increases with Lg. At the same time, the residual amplitude, Ar, increases with
Lg as well. Consequently, when applying granular dampers, one has to compromise between
the aims of small residual amplitude and efficiency of damping. Figure 4 shows Ar(Lg) due
to equation (9) together with Ar obtained from the numerical solution of equation (6) taken at
the time t∗ when the collect-and-collide regime ceases. The efficiency of damping is shown in
figure 4 expressed by the initial slope of the amplitude, −

dA
dt

∣∣
t→0

.

5. Conclusion

When an oscillating spring is attenuated by a granular damper, initially the amplitude of the
oscillation decays apparently linearly in time. When a certain value of the amplitude is reached,
the linear decay ceases and a much weaker decay is found. This behavior was reported in many
references, but the physical reason for this untypical damping behavior remained obscure. It
is the aim of this paper to give a quantitative explanation for the initial linear decay and the
residual amplitude when the linear decay ceases which are long-standing questions.

By means of experiments regarding both externally driven granular systems and relaxation
boxes filled with granulate attached to an oscillating spring, both performed under conditions of
microgravity, we found that the transition of the damping behavior is attributed to a transition of
the dynamical state of the granulate: for large amplitude, A > A∗, the particles move collectively
as a cluster whose center of mass follows the oscillation of the spring. This type of dynamical
behavior was termed collect-and-collide regime. For small amplitude, A < A∗, the material
adopts a gaseous state.

In the collect-and-collide regime, the dissipated energy may be quantified using an effective
one-particle model. We apply this result to the relaxation process of a spring damped by
a granular damper, to obtain an equation for the attenuation of the amplitude, A(t), whose
numerical solution agrees well with the observed (but yet unexplained) linear decay. To consider
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the relaxation process as a sequence of stationary states may appear questionable since à priori
we cannot exclude long-lasting transient states. However, the comparison of the theoretical
result with experiments yields quantitative agreement justifying the assumption. Besides the
slope of the initial decay, the model also predicts the transition from the collect-and-collide
regime to the gas state and the residual amplitude, Ar, in quantitative agreement with the
experiment.

The initial slope of the amplitude, Ȧ(0), and the residual amplitude, Ar, when the (rapid)
linear decay ceases, are both increasing functions of the clearance Lg determined by the filling
ratio of the damper. Therefore, when applying granular dampers, one has to compromise
between efficient damping and final amplitude. Thus, in practice, a combination of several
granular dampers representing different combinations of [ Ȧ(0), Ar] may be favorable.

Finally, we wish to mention that the initial decay follows only approximately a linear decay,
observed in many experiments and simulations. In the strict sense, the decay is described by a
nonlinear function, however, the nonlinearity is rather weak such that in many experiments the
decay appears linear.
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