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We investigate the impact of a granular jet on a finite target by means of particle
simulations. The resulting hydrodynamic fields are compared with theoretical predic-
tions for the corresponding flow of an incompressible and rotation-free fluid. The
degree of coincidence between the field obtained from the discrete granular system
and the idealized continuous fluid flow depends on the characteristics of the granular
system, such as granularity, packing fraction, inelasticity of collisions, friction and
target size. In certain limits we observe a granular–continuum transition under which
the geometric and dynamic properties of the particle jet and the fluid jet become
almost identical.
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1. Introduction
The impact of a jet of granular material on a fixed target is not only a generic

experiment in mechanics, but is also of importance to several industrial and geological
applications, such as jet milling (Gommeren et al. 2000), sandblasting (Kuppinger
1990), the formation of craters (Uehara et al. 2003), and several others. Motivated
by experiments on water jets (Savart 1833; Clanet 2001), which are well explained
by hydrodynamic theory, Cheng et al. (2007) performed experiments on granular jets
and found surprising coincidences. In particular, it was found that in both cases the
material forms an almost perfect cone after the impact. That is, the material (water
or granular) is scattered by a characteristic angle ψ , see figure 1(a), with a sharp
distribution.

In order to explain the similarity of the granular jet and the liquid jet, Huang, Chan
& Zamankhan (2010), Ellowitz, Guttenberg & Zhang (2012), Guttenberg (2012) and
Sano & Hayakawa (2012) investigated granular jet impact by means of numerical
particle simulations. Such particle simulations provide information about the inner
structure of the jet, represented by the hydrodynamic fields deduced from the particle
trajectories. This is in contrast to experiments, where it is difficult to obtain the fields
of granular systems, except for very low density.

Huang et al. (2010) performed a two-dimensional particle simulation and analysed
the pressure field. They identified a stagnation zone in front of the target, where
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the particles are almost immobile, in contrast to the corresponding fluid flow. The
existence of this stagnation zone depends on the surface properties of the particles
(Guttenberg 2012). For frictional interaction a stagnation zone is observed, where
the absolute velocity of the particles decays exponentially towards the target. For
frictionless interaction a stagnation point is observed where the velocity decreases
linearly with the distance from this point. Despite these drastic differences of the
inner structure, surprisingly, the shape of the jet is almost independent of the frictional
properties (Ellowitz et al. 2013). The frictionless case was studied in more detail by
Ellowitz et al. (2012), who obtained a striking similarity of the flow field obtained
from the particle data to the flow of an ideal incompressible and rotation-free fluid.
Picking up on this result, Sano & Hayakawa (2012) performed three-dimensional
simulations of granular jets and attributed the counterintuitive equivalence between
the flow of (dense) granular material with finite viscosity and the corresponding flow
of an ideal fluid to small shear rates in the granular jet.

The similarity of a scattered granular jet and a jet of a rotation-free incompressible
fluid with regard to both their shape and the hydrodynamic fields is far from trivial.
In general, granular systems are neither incompressible nor rotation-free. Moreover,
the relevance of hydrodynamics to such a system may be questioned at all due to
a lack of scale separation (Tan & Goldhirsch 1998; Goldhirsch 1999, 2003) which is
the most fundamental prerequisite of hydrodynamics. Therefore, the question arises of
how the granular system converges to its hydrodynamic limit described by ideal fluid
flow; that is, how the agreement between ideal fluid flow and particle data depends
on the characteristics of the particle systems, such as packing fraction, granularity and
dissipative properties.

To this end, we perform an exhaustive parameter study for a quasi-two-dimensional
granular jet set-up using highly efficient event-driven molecular dynamics (eMD).
As our main result, we will provide conditions under which agreement between the
particle system and the corresponding ideal fluid flow may be expected. For non-ideal
conditions we quantify the disagreement between the two.

Section 2 describes the set-up of the system and the details of the particle
simulation. Subsequently, the results of the particle simulation will be compared
with the theory of ideal incompressible rotation-free fluids, applied to the jet problem
(for details see § 3). In §§ 4–6 we present our main results, namely a comparison of
the particle simulations and hydrodynamics. First, we consider the geometry of the
problem. In § 4 the scatter angle of the jet is investigated in dependence on the main
characteristics of the jet such as granularity, packing fraction, inelasticity, friction
and target size. Section 5 is devoted to the contour of the jet. In § 6 we focus on
the hydrodynamic fields resulting from hydrodynamic theory and the fields obtained
from the particle simulation data by coarse graining. Finally, in § 7 we verify our
simulation method by comparing its results with experimental findings.

2. Particle simulations of the granular jet
2.1. System set-up

We consider a three-dimensional system of identical spherical particles of diameter
dp, as sketched in figure 1(a). By periodically extending the system in the z direction
we simulate a quasi-2-D granular jet of width dj impacting a target of width dt. We
use the 3-D simulation to (a) avoid spurious crystallization which is ubiquitous in
two-dimensional systems of identical spheres (see Lubachevsky & Stillinger 1990;
Kapfer et al. 2012), (b) avoid inelastic collapse scenarios which are less probable in
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FIGURE 1. (Colour online) (a) Sketch of the jet set-up. (b) Snapshot of the simulation.
The grey plane in the lower part as well as the lattice on the target are shown to support
the 3-D perspective image. (c) Jet prototype.

3-D than in 2-D (Bernu & Mazighi 1990; McNamara & Young 1991) and (c) reduce
the fluctuations of the two-dimensional hydrodynamic fields obtained from the particle
data.

The particles enter the system through the rectangle

x
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=
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· · · dj
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· · · tj
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vx

0
0

 , (2.1)

forming a stream of rectangular profile parallel to the x-axis. The stream is scattered
at the rectangular target
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Additionally, the simulation volume is bound by a cylinder of diameter dl the axis
of symmetry of which coincides with the z-axis. The scatter angle ψ is computed
from the coordinates of the particles at the instant when they cross the surface of
this cylinder. Velocity fluctuations (often referred to as granular temperature) in the
incoming jet are not considered in our investigations. In appendix A we show that a
small amount of velocity fluctuation, which is unavoidable in experimental situations,
does not invalidate the conclusions drawn in this work.

Initial conditions are generated by means of the algorithm by Lubachevsky &
Stillinger (1990). A rectangular box of sizex

y
z

= 1
2

−lj . . . lj
−dj . . . dj
−tj . . . tj

 (2.3)

with periodic boundary conditions in the x and z directions (transparent lattice in
figure 1c) is filled by Np particles of very small size. Then, a hard-sphere simulation
(elastic collisions) is performed during which the radius of the particles is slowly
increased. Once the desired packing fraction,

ρj ≡
Np

4
3 R3π

ljdjtj
, (2.4)

is reached, the particle positions and their current radius, R, are stored, see figure 1(c).
This method allows one to produce packings of predefined density, up to random close
packing. The particle system produced is used as a prototype for the initialization of
the granular jet; that is, it is continuously injected into the simulation volume at x=
−djt at velocities v = (vx, 0, 0) as sketched in figure 1(a). Once the whole prototype
is depleted, it restarts seamlessly, which is possible since the prototype is periodic in
the x direction.

2.2. Event-driven dynamics
We simulate the jet by eMD (see, e.g. Lubachevsky 1991; Pöschel & Schwager 2005).
Within eMD the contact between two particles, using the subscripts i and j, is resolved
by an instantaneous change of their linear and angular precollisional velocities v and
ω into the postcollisional values

v ′i = vi + meff

mi

[
(1+ εn) vn + 1

1+ Ĩeff
(1− εt) vt

]
,

v ′j = vj − meff

mj

[
(1+ εn) vn + 1

1+ Ĩeff
(1− εt) vt

]
,

ω′i =ωi + Ĩi

Rimi

meff

1+ Ĩeff
(1− εt) êr × vt,

ω′j =ωj + Ĩj

Rjmj

meff

1+ Ĩeff
(1− εt) êr × vt,


(2.5)
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where mi and Ri stand for the mass and radius of particle i and we use the
abbreviations

êr ≡ r i − r j∣∣r i − r j

∣∣ , meff ≡ mimj

mi +mj
, (2.6a,b)

vn ≡
[(

vi − vj
) · êr

]
êr, vt ≡

(
vi − vj

)− vn, (2.7a,b)

Ĩk ≡ mkR2
k

Ik
, Ĩeff ≡meff

(
Ĩi

mi
+ Ĩj

mj

)
, Ik ≡ 2

5 mkR2
k . (2.8a–c)

It should be noted that in this work we consider identical particles where Ri= R and
mi =m.

The dissipative properties of particle collisions are characterized by the coefficients
of normal and tangential restitution, εn and εt (see, e.g. Schwager, Becker & Pöschel
2008; Schwager & Pöschel 2008), which are assumed constant. In between collision
events the particles move along ballistic trajectories. It should be noted that the
described method does not resolve permanent contacts.

For dilute systems, eMD can be orders of magnitude faster than traditional
force-based MD. For densely packed systems it can be less efficient or even break
down completely due to inelastic collapse scenarios where an infinite number of
collisions occur in finite time (see, e.g. Luding & McNamara 1998). As the density
in our jet is large, even approaching random close packing, one could hence ask
whether eMD is suitable. It turns out that despite the large density of the jet, the vast
majority of particles move coherently without much interaction. Velocity fluctuations
leading to collisions occur only in a small interaction region in front of the target.
While in this particular region eMD is indeed quite inefficient, the overall performance
averaged over the whole domain still greatly exceeds that of a similar force-based
MD simulation.

3. Plane steady flow of an ideal incompressible rotation-free fluid

The velocity field v(x, y, z) of a rotation-free flow may be formally expressed by
the velocity potential ϕ,

v =∇ϕ. (3.1)

For stationary incompressible flow, the continuity equation takes the form ∇ · v = 0
and, thus,

1ϕ = 0. (3.2)

To describe the jet as shown in figure 1(b) in the approximation of a stationary
incompressible rotation-free flow, (3.2) must be solved for rather complex boundary
conditions describing

(a) a source where the material flows in,
(b) two sinks where the material flows out,
(c) a target where the normal component of the velocity vanishes,
(d) free surfaces of yet unknown shape where the pressure is constant, describing the

shape of the jet.
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To solve this difficult problem, we apply the technique of conformal maps. An
outstanding review of this method may be found in the book by Gurevich (1965);
here only the required results are presented.

For plane flow, i.e. v = (vx, vy), the continuity equation

∇ · v = ∂vx

∂x
+ ∂vy

∂y
= 0 (3.3)

suggests that the components of the velocity vector may both be written as derivatives
of a certain function χ(x, y),

vx = ∂χ
∂y
, vy =−∂χ

∂x
. (3.4a,b)

Using (3.1), this yields

vx = ∂ϕ
∂x
= ∂χ
∂y
, vy = ∂ϕ

∂y
=−∂χ

∂x
, (3.5a,b)

which, in turn, implies that the complex function

ω≡ ϕ + iχ (3.6)

of the complex argument q≡ x+ iy is holomorphic,

dω
dq
= ∂ϕ
∂x
+ i
∂χ

∂x
= vx − ivy, (3.7)

where ω is called the characteristic function or the complex potential and dω/dq is
the complex velocity.

In many cases, solving for ω(q) is much simpler than solving (3.2) directly. For the
case of our problem where the material flows around a finite target, there is another
advantage of applying complex algebra. According to the Riemann mapping theorem,
under mild preconditions, the flow around any obstacle may be mapped to the known
flow around a circular cylinder. If the corresponding map is found, the problem is
solved.

For the free jet hitting a fixed finite target (see figure 1b) this map is known.
Furthermore, it is convenient (see Gurevich 1965, Part I, § E) to not consider the
problem in the q= x+ iy plane directly but to express the problem using a complex
parameter t which, in the case of the jet, varies over the complex unit circle. Using
this parameterization, for the jet problem illustrated in figure 1(b) the complex
potential reads as (Gurevich 1965)

ω= s
π

[
ln(t− h)+ ln

(
t− 1

h

)
− ln

(
t− eiβ

)− ln
(
t− e−iβ

)]
(3.8)

and the transformation back to the original q= x+ iy plane is given by

q(t)= s
πv0

∫
dt

1
tκ

[
1

t− h
+ 1

t− (1/h) −
1

t− eiβ
− 1

t− e−iβ

]
. (3.9)
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The parameters β, h and κ completely determine the exact geometry of the system and
s represents the flow rate of the source. For the set-up shown in figure 1(b), κ = 0.5
and h= 1 apply (see Gurevich 1965). The parameter β is determined by the scatter
angle ψ (see figure 1a), which, in turn, is related to the ratio dt/dj of the widths of
the target and the jet by

dt

dj
= hκ

π

∫ 1

0
dξ

1
ξ κ

[
1

ξ + h
+ 1
ξ + (1/h) −

2(ξ + cos β)
ξ 2 + 2ξ cos β + 1

]
. (3.10)

Consequently, for known dt/dj, the parameter β or ψ , respectively, can be determined
by (numerically) inverting (3.10).

To determine the complex potential ω as a function of our natural coordinates, x and
y or q= x+ iy, respectively, (3.9) is solved for t. (It should be recalled that κ = 0.5
and h = 1 are determined by the set-up, s = v0dj (Gurevich 1965) and β is found
from dt/dj by means of (3.10).) For the numerical solution, v0 and dj may be chosen
as unity without loss of generality since they are the only scales of length and time.
The solution t obtained corresponding to the coordinate q= x+ iy is then used in (3.8)
to finally compute ω(q)=ω(x, y).

If (3.9) does not have a solution t, the corresponding complex coordinate
q is located outside the jet and ω = 0. The components of the velocity field
v(x, y)= (vx, vy) are then directly obtained from (3.5). Apart from this, the assumption
of incompressibility and vanishing rotation implies that the flow velocities at upstream
and downstream infinity are equal for a free jet. Because incompressible material is
considered, conservation of mass further requires that the width of the outgoing jet
is half of the width of the ingoing jet.

4. Granular dynamics versus ideal fluid flow I: scatter angle
4.1. Outline

To compare the properties of the granular jet obtained from particle simulations as
described in § 2 with the corresponding flow of an ideal incompressible and rotation-
free fluid, § 3, one can consider the problem on different levels of description. On the
lowest level, we look to the only macroscopic, that is collective, characteristic of the
problem, which is the scatter angle ψ (see figure 1a).

At first glance, it is far from obvious that the strongly idealized hydrodynamic
modelling is adequate as it is not obvious a priori that the particle jet is incompressible
and rotation-free. Moreover, the jet consists of finite-size particles which interact
inelastically and frictionally.

Therefore, in this section we discuss the deviation of the scatter angle with regard
to all those characteristics of the granular jet that constitute fundamental differences
between the description as a particle system and the description as an idealized
hydrodynamic system. These are as follows.

(i) The granularity, that is, the ratio of the jet width and the particle diameter, is
the main difference between a particle model and a field description.

(ii) The packing fraction is a source of deviations due to the assumption of
incompressibility.

(iii) The inelasticity of the particle–particle and particle–target contact establishes a
sink of energy which is not included in the hydrodynamic model.

(iv) The friction, that is, the (dissipative) transfer of angular momentum between
colliding objects (particles and walls), is not accounted for in the hydrodynamic
model.
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In some cases, it is not clear a priori whether a change of one of these
characteristics will improve or worsen the agreement between the particle model
and the hydrodynamic model. For instance, an increase of the packing fraction
reduces the compressibility but also increases the loss of energy due to an enhanced
frequency of dissipative collisions.

Finally, in this section we discuss the dependence of the scatter angle on the target
size, in comparison with experimental results by Cheng et al. (2007) and simulations
by Huang et al. (2010), Guttenberg (2012) and Sano & Hayakawa (2012). These
calculations may also be considered as a pre-exercise for the investigation of large
three-dimensional jets in direct comparison with experimental results, see § 7.

The scatter angle characterizing the jet by a single number is the lowest level of
the description. On a higher level, in § 5 we will compare the overall contour of the
granular jet as obtained from particle simulations and hydrodynamics. On a yet higher
level, in § 6 we will consider the full hydrodynamic fields as obtained from coarse
graining of the particle data of the granular jet and from the hydrodynamic theory
described in § 3.

4.2. Data acquisition and representation
The particle system was simulated until the jet adopted its stationary shape; the
trajectories obtained during this transient were not used for the subsequent analysis.
We determined the scatter angle from the trajectories of the particles as follows. For
each particle i we computed the velocity vi = (vx,i, vy,i, vz,i) at the time when the
particle leaves the simulation domain (large circle of diameter dl in figure 1a). The
scatter angle ψ is then the average over the individual angles ψi ≡ arctan(vy,i/vx,i).
It was checked that the velocity component |vz| was on average much smaller than
the components in the x and y directions. The standard deviation σψ obtained from
the individual angles ψi indicates the coherence of the granular stream far behind the
target; thus, σψ = 0 would indicate that all trajectories are perfectly parallel to one
another.

In the following §§ 4.4–4.8 the scatter angle ψ and its standard deviation σψ are
displayed as functions of the characteristic system parameters: granularity, packing
fraction, inelasticity, friction and target size. These results obtained from the particle
simulation are compared with the results due to the hydrodynamic model developed
in § 3 by evaluating (3.10) for given dt/dj.

To indicate the applicability of the hydrodynamic theory which relies on incompress-
ible and rotation-free flow, we also plot the vorticity 〈|∇× v |〉 and the divergence
〈|∇v |〉 averaged over the simulation domain. The method of computing both quanti-
ties, divergence and vorticity, will be explained in the context of § 6.3.

4.3. Generic description of figures 2 and 4–7
Each of the following §§ 4.4–4.8 contains a figure that consists of two panels.
Panel (b) always displays the mean scatter angle ψ (left ordinate, black line, circles)
and its standard deviation, σψ (right ordinate, green (grey) line, triangles). Panel (a)
displays 〈|∇ · v |〉xy (black line, circles) and 〈|∇× v |〉xy (green line, triangles), where
both quantities are normalized to their maxima individually. The symbols show the
data obtained from the particle simulation and the lines are fits to functions specified
in the figure captions. The abscissa is the system parameter considered in the current
section. The corresponding value of ψ due to the hydrodynamic theory (§ 3) is shown
by a dashed line.



Granular jet impact: sustainability of an ideal fluid description 609

0

0.25

0.50

0.75

1.00

40 50 60 70

dj/dP

38

40

42

44

46

0
2
4
6
8
10

div

rot

0 10 20 30

(a)

(b)

FIGURE 2. (Colour online) The scatter angle ψ , its standard deviation σψ and the average
vorticity and divergence of the velocity field as a function of the granularity dj/dp. The
fit functions are ψ ≈ 38.06+ 67.46/(dj/dp)

3/2, σψ ≈ 1.53+ 57.78/(dj/dp)
1.3, div≈ 0.05+

3.93/(dj/dp)
0.91 and rot≈ 0.99− 0.003(dj/dp). For further details see § 4.3.

If not specified otherwise, the system parameters are εn = 0.75, εt = 1, ρj = 0.6,
dt/dj = 0.5, tj/dp = 5, lj/dj = 1, dj/dp = 40 and djt/dj = 4. Later it will become clear
that this choice yields good agreement between the granular dynamics and the ideal
fluid flow while keeping the numerical effort during simulation tolerable.

4.4. Granularity
The granularity of the system may be quantified as the ratio of the jet width to the
particle diameter, dj/dp. It should be noted that another meaningful definition of the
granularity is given by the ratio of the target width to the particle diameter. Since our
set-up is fully described by the given parameters this ratio may be computed. Figure 2
shows the scatter angle ψ , its standard deviation σψ and the average vorticity and
divergence of the velocity field.

While the average vorticity decays linearly with dj/dp, the average divergence of the
flow approaches a small but finite value approximately like 1/(dj/dp). Consequently,
we expect better agreement between the ideal fluid and the granular jet for large dj/dp.
Indeed, the scatter angle ψ converges to the hydrodynamic value with increasing dj/dp
(see figure 2b).

At first glance, this result seems obvious: the larger the ratio dj/dp is the better
the granulate approaches a continuum. On the other hand, figure 3 indicates that the
dissipation rate in the material (Ediss) increases with the grain size dp like Ediss∝1/(dp).
This behaviour may be explained as follows. The dissipation rate is approximately
proportional to the frequency of collisions, ν, and the energy loss per collision, 1− ε2

n .
The collision frequency is given by ν ∝ √T/m nd2

p, where T denotes the granular
temperature, m is the particle mass and n is the number density of the granulate.
As the number density is related to the volume fraction ρj of the material by n =
(6ρj)/(πd2

p), we have ν ∝ √T/m(ρj)/(dp). As ρj is kept constant when varying the
granularity dj/dp, this implies Ediss ∝ d −1

p . This in turn contradicts the assumption
of an ideal fluid which does not account for dissipation. Consequently, one might
also expect that the agreement between particle simulations and hydrodynamics would
worsen for large dj/dp. This is, however, not observed.
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FIGURE 3. The dissipation rate (Ediss, N) collision rate (Ncoll, �) and average impact
velocity of two colliding particles (Vcoll, •) as a function of the granularity dj/dp. All
values are normalized by the respective maximum value attained in the interval 5 <
dj/dp < 25. The dashed lines show fits to the data: Ediss,fit ≈ 0.1 + 0.04(dj/dp), Ncoll,fit ≈
−0.08 + 1.14(dj/dp−24.4) and Vcoll,fit = 0.04 + 1.4(4.88−dj/dp). The results are obtained from
simulation. For further details see § 4.3.

Apart from finding numerical evidence that ψ(dj/dp) converges to a constant value,
it may surprise one that already for dj/dp' 40 the scatter angle has virtually adopted
its asymptotic value, which coincides with the value predicted by hydrodynamic
theory. In addition to being of scientific interest, this observation shows that a
simulation with dj/dp ≈ 40 carries already the full information on the physics of the
jet formation. Thus, figure 2 suggests that there is no need to simulate jets consisting
of particles with diameters more than 40 times smaller than the width of the jet. This,
in turn, allows us to limit the number of particles required to obtain reliable results
at moderate numerical effort.

4.5. Packing fraction
The continuum mechanical theory for the jet described in § 3 assumes incompressible
material. For a granular system, the validity of this assumption depends on the packing
fraction: a dilute granular gas is much more compressible than a system at random
close packing. Therefore, we expect the agreement between the particle system and the
ideal fluid to depend on the packing fraction ρj of the jet, defined by (2.4). Figure 4
displays the corresponding simulation results.

As expected, the divergence characterizing compressibility decreases with the
packing fraction while the average curl of the flow follows a parabola with its
minimum at ρj ≈ 0.44. Therefore, one might expect optimal coincidence between
the granular and hydrodynamic systems at ρj ' 0.44. This is, however, not observed.
Instead, ψ(ρj) is a parabolic curve with its maximum at ρj ≈ 0.44, which is exactly
the density where the average curl attains its minimum. The parabola agrees with the
hydrodynamic prediction for two values of density, ρj ≈ 0.26 and near random close
packing, ρj ≈ 0.62, corresponding to vanishing compressibility. At the same time, the
standard deviation of the scatter angle decreases exponentially with ρj, corresponding
to a sharp-edged shape of the granulate behind the target. Although both values,
ρj≈ 0.26 and ρj≈ 0.62, correspond to agreement between the angle ψ obtained from
the particle simulation and the hydrodynamic theory, only the latter value leads to a
jet with a shape that resembles the hydrodynamic prediction, see § 5.
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FIGURE 4. (Colour online) Plots of ψ , σψ , div and rot as functions of the packing fraction
ρj. The fit functions are ψ ≈−101.1ρ2

j + 87.7ρj+ 22.1, σψ ≈ 1.2+ 12.5 exp(−2.2ρj), div≈
0.11+ 0.14/ρj and rot≈ 5.2ρ2

j − 4.6ρj + 1.6. For further details see § 4.3.
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FIGURE 5. (Colour online) The role of inelasticity: ψ , σψ , div and rot as functions of
the coefficient of normal restitution εn. The lines show exponential fits to the data. For
further details see § 4.3.

The good agreement for ψ at high packing fraction agrees with our expectation
due to the low compressibility of a granulate at random close packing. However, the
parabolic shape of ψ(ρj) remains unexplained.

4.6. Inelasticity
The hydrodynamic theory from § 3 does not consider dissipation; therefore, the
question arises of how dissipative particle interaction affects the simulation results.
Figure 5 shows the simulation results as a function of the coefficient of normal
restitution characterizing the dissipative particle interaction via (2.5).

In contrast to expectations, the scatter angle ψ as well as its standard deviation
σψ increase exponentially with εn. Agreement between the particle simulation and
the hydrodynamic result is obtained for inelastic particles. This observation is
accompanied by exponential increase of both the average divergence of the flow
and its average vorticity. Thus, the coincidence between the granular jet and the
corresponding flow of an ideal incompressible and rotation-free fluid improves with
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FIGURE 6. (Colour online) The role of friction: ψ , σψ , div and rot as functions of the
coefficient of tangential restitution εt. The lines connect the data points to guide the eye.
For further details see § 4.3.

growing inelasticity. The best agreement is reached for εn / 0.8; even smaller values
of εn do not lead to further improvement.

On one hand, this observation may surprise since the hydrodynamic theory does
not account for dissipation. On the other hand, the reduction of the relative normal
velocity of the particles leads to alignment of the trajectories of adjacent particles, as
shown by Brito & Ernst (1998), which in turn might cause a more coherent particle
flow similar to the dynamics of an ideal incompressible and rotation-free fluid.

It should be noted that for εn . 0.65 there occur spurious unavoidable inelastic
collapse scenarios during the event-driven simulation. This well-known artifact of the
hard-sphere model (McNamara & Young 1991) underlying the event-driven simulation
method limits the range of εn accessible to event-driven simulations to 0.65/ εn 5 1.

4.7. Friction
Within the hard-sphere model, friction is quantified by the coefficient of tangential
restitution, εt ∈ [−1; 1] (see (2.5)). This coefficient has two elastic limits. The limit
εt = 1 describes perfectly smooth particles such that the rotation cannot be changed
by collisions. The other elastic limit, εn=−1, describes completely elastic reflection of
the tangential component of the relative velocity at the contact point, i.e. the particles
behave like elastic gearwheels on collision. The inelastic limit, εt = 0, describes a
collision where the tangential part of the relative velocity vanishes. Figure 6 shows
the simulation data as functions of εt.

There are two remarkable features: (a) the deviation of the scatter angle from the
hydrodynamic prediction follows the vorticity, but not the divergence, and (b) good
agreement between hydrodynamics and particle simulation is found for εt close to one
of its elastic limits. This is qualitatively different from the dependence on εn where
we find good agreement for the inelastic limit. Out of the elastic limits of εt only
εt →+1 is of relevance since the other limit, εt →−1, is characterized by a large
variance of the scatter angle, that is, incoherent trajectories, which are not observed
in the experiment.

4.8. Target size
The four parameters discussed in §§ 4.4–4.7 describe the constitution and material
properties of the jet. In the present section, we focus on a geometric property, namely
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FIGURE 7. (Colour online) Dependence on the target size: ψ , σψ , div and rot as functions
of the ratio of target size and jet width, dt/dj. The solid black lines show the function
σψ(dt/dj)= 0.65+ 2.58 exp(−0.84(dt/dj− 1.31)2) (b) and div= 0.39+ 0.3/(dt/dj) (a). All
other lines are guides to the eye. For further details see § 4.3. It should be noted that in
contrast to the previous figures, ψ is plotted by the green line and triangles and σψ by
the black line and circles for better visibility.

the ratio of the target size to the width of the jet, dt/dj (see figure 1a). All other
parameters are maintained at the values specified in § 4.3. These values were chosen
such that good agreement was obtained for dt/dj= 0.5 used in the preceding sections.
While the parameters discussed so far, i.e. granularity, packing, inelasticity and
friction, do not have counterparts in an idealized hydrodynamic description, the value
of dt/dj enters both the hydrodynamic model (via (3.10)) and (obviously) the particle
simulation. Figure 7 shows the dependence of the jet properties on the ratio dt/dj.

The particle simulation and the corresponding flow of an ideal incompressible and
rotation-free fluid are in almost perfect agreement for all target sizes. Only in a
narrow interval around dt/dj ≈ 2 do we see a small deviation, accompanied by some
increase of the standard deviation which is, nevertheless, of very small value. While
the average divergence of the flow decreases monotonically with dt/dj, the average
vorticity is almost constant, except for dt/dj . 2. For dt/dj ' 4, the scatter angle
approaches its asymptotic limit ψ→ 90◦.

By varying dt/dj in a wide range while keeping all other parameters invariant,
we obtain very good agreement between the results of particle simulation and
hydrodynamics. Therefore, we conclude that the good agreement noted in the previous
sections is not only a peculiarity of the particular system geometry considered so far
but a characteristic feature of the jet set-up.

It should be noted that the dependence of the scatter angle ψ on the ratio of target
size to jet width dt/dj was investigated experimentally by Cheng et al. (2007) and in
simulations by Guttenberg (2012).

5. Granular dynamics versus ideal fluid flow II: contour of the jet
In the previous section we investigated the agreement between the hydrodynamic

model of the granular jet and particle simulations for a variety of system and material
parameters on the lowest level. Only the scatter angle and its standard deviation were
considered; that is, the properties of the jet were condensed to one or two single
numbers. For suitable parameters we obtained almost perfect agreement.
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FIGURE 8. The contour of the jet as obtained from the theory of an ideal incompressible
and rotation-free fluid (black lines) together with a snapshot of the particle simulation in
the stationary state where all particles are shown in grey. For the simulation parameters
see § 4.3.

In the current section we check whether this agreement is only for the scatter angle
or whether both models describing the jet, granulate and fluid, also agree with regard
to the shape (contour) of the jet.

For the ideal incompressible and rotation-free fluid, the shape of the jet may be
obtained from the hydrodynamic theory as follows. It is known (Gurevich 1965) that
the contour of the jet corresponds to the unit circle in the complex t plane described
in § 3. Hence, by solving (3.9) for

t= eiθ , 05 θ 5 2π, (5.1)

we obtain a map θ↔ q with q= x+ iy describing the contour of the jet in the (x, y)
plane, see figure 8.

To compare with the simulation results, the hydrodynamic result (black lines in
figure 8) was superimposed with a snapshot from the particle simulation where the
particles are shown in grey. Up to about one jet width behind the target (x/dj≈ 1) the
shape of the granular jet and the fluid are in almost perfect agreement. For x/dj > 1,
the outer boundaries of the two outgoing branches form a sharp continuous edge, still
in perfect agreement with hydrodynamics. The inner surfaces of the outgoing jets
appear less coherent; here the particles enter the inner region noticeably, leading to
a diffuse structure. This is due to the perturbation the particles experienced through
direct contact with the edges of the target. While the outgoing jets as obtained from
the hydrodynamic theory are bound by parallel straight lines, this is not the case for
the granular flow, which spreads towards the inner region. Apart from these small
differences, the agreement between the results of the particle simulation and the
corresponding idealized hydrodynamic theory is remarkable, given that there are no
adjustable parameters.

6. Granular dynamics versus ideal fluid flow III: hydrodynamic fields
6.1. Outline

In § 4 we analysed the dependence of the scatter angle as a function of the geometric
and material properties of the particle simulation. We demonstrated that for a wide
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range of these parameters, the results of the particle simulation agree very well with
the hydrodynamic theory of an ideal incompressible and rotation-free fluid. Assuming
a set of parameters out of this range (see § 4.3) the shape of the granular flow agrees
almost perfectly with the hydrodynamic theory as well (see § 5). Here, assuming the
same parameters, we compare the properties of the hydrodynamic results and the
particle simulation on a still higher level. To this end, we analyse the inner structure
of the flow by examining the hydrodynamic fields.

In the case of the hydrodynamic modelling, the velocity field v(x, y) may be
obtained from (3.5). To obtain continuous fields from the discrete particle data of
the simulated granular system, we apply the coarse-graining method by Goldenberg
& Goldhirsch (2006), Serero et al. (2008) and Goldhirsch (2010) and some slight
generalizations, detailed in the following section.

6.2. Obtaining hydrodynamic fields from particle data by coarse graining
We consider a set of particles i of masses mi located at r i and travelling at velocities
vi ≡ ṙi. The coarse-grained densities of mass and momentum are then defined by

ρ(r)≡∑i miφ (r − r i) ,

p(r)≡∑i miviφ(r − r i),

}
(6.1)

where φ is a non-negative scalar function, the spatial integral of which equals unity,
with a well-defined width ω and a single maximum at r = 0 (see Goldenberg &
Goldhirsch 2006). A good choice is, e.g. a Gaussian

φ(r)= 1
(ω
√

π)3
e−(

r
ω )

2

. (6.2)

The coarse-grained velocity field is then defined as

V(r)≡ p (r)
ρ(r)

(6.3)

and the fluctuating velocity field of particle i measured at the point r reads as

v
f
i ≡ vi − V(r). (6.4)

With this, the coarse-grained stress tensor is given by

σαβ(r)=−1
2

∑
i,j

fijαrijβ

∫ 1

0
ds φ(r − r i + sr ij)−

∑
i

miv
f
iα(r)v

f
iβ(r)φ(r − r i), (6.5)

where f ij is the force particle j exerts on particle i and r ij ≡ r i − r j. The first part of
the right-hand side of (6.5) represents the contact stress or collisional stress and the
second term the kinetic stress or streaming stress. For coarse-graining scales ω, which
are large compared with the separation

∣∣r ij

∣∣, the integral in (6.5) may be approximated
by the coarse-graining function given by Goldenberg & Goldhirsch (2006),∫ 1

0
ds φ

(
r − r i + sr ij

)= φ (r − r i)+O
( r ij

ω

)
. (6.6)
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The coarse-graining method by Goldenberg & Goldhirsch (2006) was developed for
arbitrary interaction forces f ij. For the case of the hard-sphere model, the interaction
forces correspond to δ-shaped pulses

fij(t)= Nδ(t− tij), (6.7)

where tij is the time of the instantaneous collision between the particles i and j. The
prefactor N may be obtained by integrating Newton’s equation of motion for the
collision of two particles,

mi r̈ i = fij = N iδ(t− tij), (6.8)

which yields
N i =mi

(
ṙ ′i − ṙ i

)=mi
(
v ′i − vi

)
. (6.9)

The collisional part of the stress tensor (first term on the right-hand side of (6.5))
then reads as

σ col
αβ =−

1
2

∑
tij=t

mi
(
ṙ ′i − ṙ i

)
α

rijβ(tij)

∫ 1

0
ds φ(r − r i + sr ij). (6.10)

It should be noted that unlike all other coarse-grained quantities considered so far, it
is meaningless to evaluate (6.10) at one instant in time, because the probability of
encountering an instantaneous collision at exactly one instant in time (tij= t) vanishes.
Consequently, temporal averages over a certain interval [ts; te) should be considered,

〈
σ col
αβ

〉te
ts
≡− 1

2(te − ts)

∑
tij∈[ts;te)

mi
(
ṙ ′i − ṙ i

)
α

rijβ(tij)

∫ 1

0
ds φ(r − r i + sr ij), (6.11)

where the sum runs over all collisions taking place in the interval tij ∈ [ts; te).
In the subsequent sections, we present the hydrodynamic coarse-grained fields

obtained from the particle trajectories. The results are compared with the fields
obtained for the corresponding flow of an ideal incompressible and rotation-free fluid.

6.3. Divergence and curl
The two main prerequisites for the hydrodynamic theory described in § 3 are
incompressibility and vanishing rotation. Therefore, it is expected that the agreement
between this theory and the flow of the granular jet will be best when both the
compressibility, measured by the divergence of the flow ∇ · V , and the vorticity
∇ × V are small. Figure 9 displays both quantities, which may be obtained directly
from (6.3). The parameters for the granular jet were chosen such that good agreement
with the fluid flow is expected due to the analysis of the scatter angle in § 4. Details
are given in § 4.3.

Figure 9 may explain the striking agreement between the granular jet and the
corresponding hydrodynamic flow described in § 3 by hindsight: in almost the entire
simulation domain, both quantities, the divergence and the vorticity, of the granular
flow are close to zero. Significant deviations are only encountered in the immediate
vicinity of the edges of the target. Additionally, both values are slightly increased
along the inner sides of the outgoing jets where the contour of the granular jet also
deviates from the hydrodynamics, see figure 8.
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FIGURE 9. (Colour online) Fields of the coarse-grained divergence ∇ · V(x, y) (b) and
vorticity ∇×V(x, y) (a) in the stationary state. The averaging period was chosen such that
the incoming jet travelled a distance of ten particle diameters during the averaging. Both
fields are normalized to their maximum values. The grey rectangular area indicates the
target. For the parameters see § 4.3. The dashed box indicates the region used to compute
the spatial averages 〈|∇ · V |〉xy and 〈|∇× V |〉xy shown in figures 2 and 4–7.

The overall vorticity and divergence of the granular system may be quantified by
the spatial averages 〈|∇ · V |〉xy and 〈|∇× V |〉xy evaluated in the range indicated by
the dashed box in figure 9. While the absolute values of these averages are quite
meaningless, they may indicate how the degree of fulfillment of the preconditions for
the hydrodynamic theory changes on modifying a certain parameter of the particle
simulation, such as granularity, packing fraction, etc. Such analyses have been
presented in §§ 4.4–4.8. It should be noted that the choice of the region in which
〈|∇ · V |〉xy and 〈|∇× V |〉xy are averaged is basically arbitrary. In appendix B we
show that the conclusions drawn in §§ 4.4–4.8 hold as long as the averaging region
is sufficiently large and is chosen such that the incoming jet, the interaction zone in
front of the target and the outgoing jets are covered.

6.4. Absolute velocity
Let us compare the velocity field v(x, y) for the flow of an ideal incompressible and
rotation-free fluid, the main result of § 3, with the velocity field of the granular jet
impact obtained from the particle data by coarse graining. Panel (b) of figure 10 shows
the field of absolute velocity |v | (x, y) and panel (a) shows the corresponding field for
the particle system, obtained from (6.3).

As already discussed by Ellowitz et al. (2012), the overall coincidence between the
granular flow and the fluid flow is striking. This is true not only with regard to the
geometric shape of the jet, but also with regard to its inner structure. Despite the
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FIGURE 10. (Colour online) The field of the absolute velocity |v(x, y)| for the granular
jet due to (6.3) (a) and due to hydrodynamic theory (3.5) (b). The parameters are given
in § 4.3.

good agreement, there are two noticeable differences: (a) while the velocities of the
ingoing and outgoing jets are identical for the fluid flow, the outgoing velocity of the
granular system is smaller than the incoming one; (b) there is a small offset between
the absolute velocities of the granular and fluid jets. Both deviations may be attributed
to the dissipative nature of particle collisions in the case of the granular flow.

For a more quantitative assessment, in figure 11 the contour lines are shown
for some values of the absolute velocity. The figure reveals that the differences in
the velocity fields are more significant then expected from figure 10. While right
in front of the target, where small absolute velocities are encountered, the contour
lines are in very good agreement, for increasing absolute velocity, this coincidence
gradually vanishes. For |v(x, y)| ' 0.8 we find large deviations and in the outgoing
flow the shape of the contour lines is even of opposite curvature. The astonishing
coincidence for small absolute velocities was already highlighted by Ellowitz et al.
(2012); however, the substantial differences for larger values of the absolute velocity
are not discussed there.

6.5. Pressure
The pressure field, p(x, y), of the liquid jet is obtained from the Bernoulli equation
valid for incompressible and rotation-free flow,

ρ
|v |2

2
+ p= p0, (6.12)

where the density ρ(x, y) is an arbitrary constant. At the in-flow the pressure vanishes.
The constant total pressure p0 is, hence, given by

p0 = ρ2 v
2
x , (6.13)

where the corresponding in-flow velocity vx is chosen as unity in the following.
For the granular system, the coarse-grained pressure may be obtained as 1/3 of

the trace of the coarse-grained stress-tensor equation (6.5). In analogy to the stress
tensor, the pressure is constituted of a kinetic and a collisional part. Both parts are
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FIGURE 11. (Colour online) Lines of constant absolute velocity for the granular (solid
black lines) and the liquid jet (dashed green/grey lines). The dotted line shows the jet
contour of the liquid jet as described in § 5. The arrows group the lines for the granular
and liquid systems which belong to the same absolute velocity indicated by labels. The
parameters are given in § 4.3.
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FIGURE 12. (Colour online) Coarse-grained pressure (trace of the stress-tensor equation
(6.5)). (a) Kinetic part. (b) Collisional part. The parameters are given in § 4.3.

presented separately in figure 12. (It should be noted that both parts are normalized
to their maxima individually. In absolute scale, the kinetic part is approximately 1.5
times larger than the collisional part.) Qualitatively, the collisional part of the granular
pressure relates to the field of the absolute velocity in the same way as for the case
of the ideal fluid (see (6.12)): the pressure adopts a large value in regions where the
absolute velocity is small, and vice versa. The kinetic contribution behaves differently:
this part of the pressure is very small in almost the entire domain, except in the
vicinity of the edges of the target.

Figure 13 compares the fields of total pressure resulting from the particle simulation
of the granular jet with the total pressure obtained from the hydrodynamic theory of
an ideal incompressible and rotation-free fluid. Disregarding a small region close to
the edge of the target where the kinetic contribution to the pressure dominates (see
figure 12), we obtain very good agreement.

For the ideal incompressible and rotation-free fluid, the velocity field is directly
related to the pressure field via the Bernoulli equation (6.12). Surprisingly, this relation
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FIGURE 13. (Colour online) The pressure field of the granular flow as obtained by coarse
graining of the particle data (trace of (6.5)) (a) and the pressure field of the liquid jet
according to (6.12) (b). The parameters are given in § 4.3.

seems to hold to good approximation for the granular flow as well. This is remarkable
because in general granular systems are not incompressible and neither may their
velocity field be written as the gradient of a velocity potential (see figure 9).

7. Validation of the hard-sphere modelling

The hard-sphere model, which was applied to simulate the granular jet, is a
strong idealization (see, e.g. Müller, Krengel & Pöschel 2012; Müller & Pöschel
2012). Therefore, the question arises whether hard-sphere simulations are capable of
describing the physics of real granular jets. To this end, in this section we verify our
simulation method by comparing its results with experimental data by Cheng et al.
(2007) on the impact of granular jets with circular profiles.

The experiments by Cheng et al. (2007) involve jets with dj/dp ≈ 70, thus
comprising an abundance of approximately 15 million glass or copper beads. Although
it is possible to simulate systems containing so many particles using event-driven MD
in the dilute state for a reasonable interval of real time on common desktop computers
(Bannerman, Sargant & Lue 2011), for dense systems like the granular jet considered
here, eMD becomes less efficient, which limits the feasible number of particles.
Fortunately, figure 2 indicates that it is actually not necessary to consider the huge
number of particles involved in the experiments. The collective dynamics of the jet
does not change significantly when the granularity is changed from dj/dp ≈ 70 to
dj/dp ≈ 40. Therefore, we compare the experimental results with simulations with
approximately four million particles such that dj/dp ≈ 40.

By applying the above argument three-dimensional simulations approaching the
experiment by Cheng et al. (2007) are possible on common desktop computers,
where about one week of cpu time is needed to attain a steady-state flow and a good
temporal averaging on the steady state. The simulations are analogous to the ones
described in § 2 apart from the shapes of the jet and the target which are now three
dimensional, that is cylindrical. Correspondingly, the cylinder bounding the simulation
volume (see figure 1a) is replaced by a sphere and the periodic walls, bounding the
simulation in the z direction, are irrelevant.

Figure 14 displays the scatter angle of the circular shaped jet as a function of the
ratio dt/dj obtained from the simulation together with the corresponding experimental
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FIGURE 14. (Colour online) The scatter angle ψ as a function of the ratio of the target
to the jet diameter dt/dj. Black crosses: experimental data by Cheng et al. (2007) for
100 µm glass beads; green (grey) circles: three-dimensional hard-sphere simulation; blue
(black) triangles: experimental data by Clanet (2001) for a water jet at large Weber number.
The dashed line corresponds to ψ = 90◦. The parameters of the simulation are ρj = 0.6,
εn = 0.75, εt = 1, dj/dp = 40, lj/dj = 1 and djt/dj = 8.

results by Cheng et al. (2007). The simulation results are in perfect agreement
with the experimental data for 100 µm beads of copper or glass. To highlight the
astonishing similarity to fluid flow, figure 14 additionally shows the corresponding
experimental data for a water jet in the limit of large Weber number such that surface
tension may be neglected (Clanet 2001).

The agreement of the results obtained by simulation and experiment justifies
the application of the hard-sphere model and, correspondingly, eMD algorithms
a posteriori. It should be noted that the good agreement between simulation and
experiment also suggests that interstitial air does not play a role in the experiment as
it is not considered by our model.

8. Summary
We investigated the impact of a granular jet on an immobile target of finite

size by means of event-driven MD exploiting the hard-sphere model for particle
collisions. Surprisingly, particular granular jets, characterized by particular parameters,
are quantitatively well described by the hydrodynamics of an incompressible and
rotation-free fluid, which has been pointed out before by Cheng et al. (2007), Ellowitz
et al. (2012), Guttenberg (2012) and Sano & Hayakawa (2012).

Obviously, this hydrodynamic description of a granular jet is not always (for all
sets of parameters) justified since, in general, a granular system is neither continuous
nor incompressible nor rotation-free. Therefore, in this paper we raised the question
whether there is a hydrodynamic limit for the granular jet such that it can be described
by ideal fluid flow and, if it exists, under which conditions this limit is attained.

To this end, we performed an extensive parameter study using event-driven
hard-sphere simulations and compared the obtained macroscopic geometric and field
characteristics with the corresponding analytical solution of an ideal incompressible
and rotation-free fluid.

The most characteristic feature describing the jet impact is the scatter angle, see
figure 1(a). Therefore, we investigated how the characteristics of the granular system
influence this quantity. These characteristics are the granularity, the packing fraction of
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the impacting jet, the inelasticity of particle collisions, the friction between particles
and the target size.

Probably the most obvious difference between a particle description and a
hydrodynamic description is the granularity; that is, the ratio between the jet width
and the grain diameter dj/dp. It was found that the scatter angle of the granular system
approaches the value obtained from hydrodynamics like 1/(dj/dp). Remarkably, the
hydrodynamic limit is virtually achieved already for dj/dp ' 40.

Another characteristic feature of a granulate is the dissipative nature of particle
collisions. In the hard-sphere approximation, this feature is expressed by the
coefficient of normal restitution, εn. We find that with decreasing εn, the scatter
angle of the granular system converges exponentially to its hydrodynamic limit. For
εn / 0.75 this limit is practically attained.

It is expected that only densely packed granular jets may be described by the
hydrodynamics of an incompressible fluid. To verify this assumption we investigated
the scatter angle ψ of the granular system as a function of the packing fraction
ρj of the incoming jet. Surprisingly, there are two values of ρj where ψ attains its
hydrodynamic limit. However, only the higher value of ρj corresponds to a granular
jet with a shape similar to that of the corresponding flow of an incompressible fluid.

Within our simulations, the friction between colliding particles is characterized
by the coefficient of tangential restitution εt. Apparently, friction strongly influences
the vorticity of the granular flow. We observed small (average) vorticity for smooth
particles where εt = 1. Correspondingly, the scatter angle of the granular jet attains
the value predicted for the flow of a rotation-free fluid close to εt= 1. Both ψ(ρj) and
ψ(εt) approach the hydrodynamic limit (ψ ≈ 38◦). However, in contrast to ψ(εn) and
ψ(dj/dp) the hydrodynamic limit is approached at finite slope (see figures 6 and 4).

While investigating the dependence of the scatter angle on dj/dp, εn, εt and ρj, the
ratio of the diameters of the target and the jet was kept constant. To show that our
findings are not just a result of this particular geometry, we showed that the scatter
angle of the granular jet is in perfect agreement with that of the fluid flow for all
values of dj/dp.

After describing the dependence of the scatter angle on the parameters of the
granular system, we investigated the details of the hydrodynamic fields. To this end,
we considered the set of parameters for which the scatter angle of the granular jet
was in optimal agreement with the scatter angle obtained from the hydrodynamic
theory of an ideal incompressible and rotation-free fluid.

First, the shape of the jet was considered; that is, the field of density. We found that
the outer contour of the granular jet (pointing away from the axis of symmetry) was
in perfect agreement with the one of the fluid jet while the inner contour (pointing
towards the symmetry axis) exhibited two significant differences. First, the particle
flow at the inside was less coherent in comparison with the outer contour. Second,
the scatter angle ψ of the particles was slightly smaller than the one predicted by the
fluid flow.

The fields of the divergence and the vorticity of the flow obtained from the particle
simulation indicated that both quantities are small almost everywhere. Significant
differences appeared only at the edge of the target and the inside of the outgoing jets.

Near the target, where small absolute velocities were observed, the contour lines of
the field of absolute velocity were in almost perfect coincidence with those of the fluid
flow. While this has been observed before by Ellowitz et al. (2012) and Guttenberg
(2012), it was found that the contour lines were not comparable at all in regions
of high absolute velocities. Even though this was not shown in this paper, a similar
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statement holds for the pressure field of the granular system. Its contour lines compare
well with those of the fluid flow in regions where high pressure is observed (near the
target). In regions of low pressure the contour lines do not agree at all. Surprisingly,
these differences in the fields do not influence the shape of the granular jet which is
in almost perfect agreement with the one of the liquid jet everywhere.

The pressure of the granular system decomposes into a kinetic and a collisional
contribution. While the collisional part, which dominates almost everywhere, is in
perfect agreement with the pressure of the fluid flow, the kinetic part contributes
substantially only close to the edges of the target. There, the field of total pressure
deviates significantly from the one of the fluid.

Exploiting our findings, we applied event-driven MD to a three-dimensional
jet impacting an obstacle. While in three dimensions no analytical result for the
corresponding hydrodynamics is available, we could still compare the results of the
particle simulation with experimental results. The very good agreement between
simulation and experiment justified the hard-sphere model and the event-driven
simulation method a posteriori.
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Appendix A. The granular temperature of the incoming jet
The velocity of granular particles separates into a streaming part and fluctuations

around the streaming contribution. The fluctuating part is often referred to as the
granular temperature. In our simulations we set the granular temperature in the
incoming jet to zero. In contrast, a real granulate will always contain some amount of
fluctuating velocity as it is difficult to prepare a dense granular jet without generating
any velocity fluctuations. In this section we show that small velocity fluctuations,
which are unavoidable in experimental situations, may safely be neglected and do not
invalidate our conclusions.

Velocity fluctuations of the incoming jet assume their maximum at the outer region
of the jet where the particles come into contact with the experimental set-up. Such
fluctuations would lead to a widening of the incoming jet. In experiments, e.g. Cheng
et al. (2007), the widening angle α (see figure 15a) is found to be smaller than 1◦
(see figure 15b). From geometry we find tan α ≈ vT/vx, where vT may be estimated
by the thermal velocity. For α = 1◦ this implies vT ≈ 0.02vx. In the experiment the
velocity fluctuations are initiated when the particles are ejected. From there on, their
thermal velocity diminishes due to inelastic collisions. To quantify the impact of
temperature on our results, we simulated the corresponding system where the particle
velocities at the outlet are distributed according to a Maxwell distribution with the
thermal velocity vT ≈ 0.02vx. Panel (c) in figure 15 shows the resulting temperature
field in the incoming jet. We clearly see that the granular temperature at the particle
source (x = −4) rapidly decreases due to collisions. At the position where the jet
impacts the target (x = 0), the granular temperature is approximately zero. At the
boundary of the jet, the granular temperature decreases more slowly than in the
interior due to a lack of collision partners. Therefore, the edge of the jet becomes
fuzzy and the jet widens by a tiny angle / 1◦ (see figure 15c). Panels (c) and (d) of
figure 15 hence suggest that the influence of the granular temperature of the incoming
jet caused by the interaction of the granulate with the outlet can be neglected.
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FIGURE 15. (Colour online) (a) The widening of the jet can be used to estimate the
thermal velocity vT . (b) Experimental realization of the granular jet impact. Reprinted
figure with permission from Cheng et al. (2007). Copyright (2007) by the American
Physical Society. (c) The temperature field of the incoming jet. (d) The shape of the
incoming jet. The deviation of the border of the incoming jet from the straight green
(grey) line is due to the initial temperature.
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FIGURE 16. (Colour online) (a,c) Average divergence (div, black line/symbols) and
rotation (rot, green (grey) line/symbols) of the granular jet flow. The data are the same
as shown in figure 2(a,b) but for averaging zones of different size and location indicated
in (b,d). It should be noted that all sets of data are normalized to their maximum value.
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Appendix B. Average divergence and vorticity
In §§ 4.4–4.8 the average divergence and vorticity of the granular flow are used

to indicate to what extent the granulate fulfils the prerequisites of the hydrodynamic
theory presented in § 3, namely incompressibility and vanishing vorticity. The averages
are taken over the region marked in figure 9. To demonstrate that this particular choice
is suitable to determine these quantities, we repeat the calculation shown in figure 2(a)
but for regions of averaging of different size and location.

Figure 16(a) shows the data of figure 2 where the corresponding regions of
averaging are marked in figure 16(b). When computing the average divergence,
regions b–e all yield the same result (curves div b–e); only div a corresponding to
region a deviates noticeably. For the average rotation, averaging over regions c–e
yields almost identical results, whereas averaging over the smaller regions a or b
leads to deviations. However, not only the size of the averaging zone matters, but
also its location. Figure 16(c,d) compares the results when averaging over three zones,
a,b and c, of different location. Here, only averaging over zone b yields results in
agreement with figure 2; the other zones are not representative for the vorticity and
divergence of the jet problem.

From the results shown in figure 16 we conclude that the results presented in
§§ 4.4–4.8 are relatively insensitive with respect to the choice of the averaging zone,
provided that it covers the interaction zone in front of the target, including the
incoming jet and the outgoing jets.
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