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Abstract. We study complex oscillations generated by the de Pillis-
Radunskaya model of cancer growth, a model including interactions
between tumor cells, healthy cells, and activated immune system cells.
We report a wide-ranging systematic numerical classification of the
oscillatory states and of their relative abundance. The dynamical states
of the cell populations are characterized here by two independent and
complementary types of stability diagrams: Lyapunov and isospike
diagrams. The model is found to display stability phases organized reg-
ularly in old and new ways: Apart from the familiar spirals of stability,
it displays exceptionally long zig-zag networks and intermixed cascades
of two- and three-doubling flanked stability islands previously detected
only in feedback systems with delay. In addition, we also character-
ize the interplay between continuous spike-adding and spike-doubling
mechanisms responsible for the unbounded complexification of periodic
wave patterns. This article is dedicated to Prof. Hans Jürgen Herrmann
on the occasion of his 60th birthday.

1 Introduction

For many years a topic of vital importance is the understanding of tumor dynam-
ics and sensitivity to the plethora of factors that determine their manifestation and
growth [1,2]. One specific result of the long effort to tame all kinds of tumors is the
current availability of a number of mathematical models of tumor dynamics. In one
way or another, such models combine tumor growth models (exponential, logistic,

http://www.epj.org/
http://dx.doi.org/10.1140/epjst/e2014-02254-3


2132 The European Physical Journal Special Topics

Gompertz, etc.), the response of the immune cells, and terms describing Lotka–
Volterra type predator–prey competition for resources among normal and tumor cells.
On a more advanced level, models also include terms contemplating molecular-genetic-
biological perspectives aiming to account for or to develop specific forms of therapy,
particularly chemotherapy.
The study of tumor models is appealing from many points of view. Nowadays, it

is attracting considerable interest from the physics community. Dynamically, tumor
models open a host of new challenges related to the specific ways of representing
complex competition mechanisms, which also underlie other natural phenomena. The
situation here is reminiscent of the known Lorenz-Haken isomorphism [3,4] discovered
between the irregular pulsations observed in the single-mode laser with the ones
known for the Lorenz equations. Since both models operate in completely different
regions of the same control parameter space, the discovery of the isomorphism has
enriched in a single stroke both fields with valuable insight. Interest among the physics
community in tumor models is illustrated in papers published, for example, in a special
issue dedicated to computational oncology of the Journal of Mathematical Biology
[5], and in an ongoing focus issue on the physics of cancer in the New Journal of
Physics [6].
From the multitude of models in existence, here we study tumor dynamics as pre-

dicted by an interesting three-variables model introduced by de Pillis and Radunskaya
[7]. The model in question is an outgrowth of a two-variables model involving a pair of
coupled first-order ordinary differential equations introduced by Kuznetsov et al. [8]
for two cell populations, namely for effector immune cells and tumor cells. Even for
just two cell populations the model could display rich dynamics and explain impor-
tant aspects of the stages of cancer progression. A valuable asset is that Kuznetsov
et al. [8] performed a detailed estimation of parameters describing processes that can-
not be measured in vivo. They also did a global bifurcation analysis of the two cell
model. De Pillis and Radunskaya were interested in exploring how to keep oscilla-
tions of cell populations to a minimum and in finding strategies to move the system
into the basin of attraction of healthy, stable equilibrium states. They were interested
in obtaining a more complete understanding of the implications of the existence of
basins of attraction in the treatment process. Both works [7,8] contain long lists of
references and nice overviews of the major mathematical frameworks in use, their
interpretations, and valuable discussions about the sort of diseases and treatments
that they address.
From a dynamical point of view, the typical analysis of cancer models has been

mainly confined to phase-space analysis, namely to analysis focused on the variables of
the problem, i.e. on recording what happens to the temporal evolution of the variables
while keeping parameters fixed, and to identifying and investigating limit sets. The
main emphasis of phase-space analysis is to locate and classify fixed points and to
perform for them the traditional linear stability analysis with the help of powerful
theorems. However, for models involving three or more variables, no theorems are
known to ensure or to exclude the existence of periodic/chaotic motions. Phase-space
analysis is normally conducted for a selected choice of parameter values. However,
modern computer clusters allow one to perform rather detailed investigations and to
probe what happens over extended intervals of control parameters. Technically, this
means obtaining stability diagrams or, equivalently, phase diagrams. This is what we
do here.
Deterministic chaos in the cancer model of de Pillis and Radunskaya was reported

recently by Itik and Banks [9]. They found a chaotic attractor for one specific point
in parameter space (defined in their Theorem 4.1), calculated Lyapunov exponents
for this point, and argued that the system has what they refer to as a Shilnikov-
like connection. Their work was complemented and extended by Duarte et al. [10],
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who reported finding chaos along one specific parameter interval in control space.
These authors characterized chaos using symbolic dynamics and Lyapunov exponents.
Concomitantly, Letellier et al. [11] performed a topological analysis of the model,
which they find to indicate new trends in understanding interactions among tumor
cells. Instead of a single interval, they report chaos for certain parameter intervals
of the host cell growth rate and the tumor cell killing rate. In particular, they show
that increasing the growth rate of the host cells enhances fluctuations of populations
and induces more rare but fast growing tumors. Very recently, Lopez et al. [12] also
found chaotic motion for certain parameter choices of the system. By decreasing
the response of the immune system to the tumor cells they found a boundary crisis
leading to transient chaotic dynamics, so that the system behaves chaotically for a
finite amount of time until an unavoidable extinction of the healthy and immune
cell populations occurs. They suggested a control method to avoid extinction. Since
deterministic chaos is well-documented in Lotka–Volterra type models [13,14], it is
curious that it took so long for chaos to be identified in the de Pillis and Radunskaya
cancer model.
The aim of the present paper is to considerably extend and complement these

previous works by presenting a systematic characterization of the dynamics, chaotic
or not, which is observed in two sections of the multiparametric parameter space of
the model. Specifically, we report high-resolution phase diagrams displaying a very
detailed classification of periodic and chaotic stable oscillations observed in extended
two-parameter windows. Such diagrams delimit precisely the (very complex) bound-
aries between stability phases. Apart from presenting the standard characterization
in terms of Lyapunov exponents, we also characterize cell dynamics through the
much more illuminating isospike diagrams, i.e. phase diagrams depicting for every
point in parameter space the number of spikes contained in one period of the reg-
ular oscillations [15–20]. As illustrated in the phase diagrams below, in addition to
discriminating between chaos and regularity, namely apart from displaying the same
informations provided by the usual Lyapunov phase diagrams, isospike diagrams pro-
vide two additional key pieces of information. First, their colors display the num-
ber of spikes contained in each periodic oscillation, the colorful tiling reflecting the
extension and the shape of the phases characterized by stable oscillations having
a constant number of spikes. Second, the boundaries between the distinct phases
allow one to visualize how the number of spikes of the periodic oscillations evolve
when parameters are tuned. In other words, isospike diagrams display the system-
atic buildup of the number of spikes, i.e. of the complexity of the wave patterns,
and how fast and where in the control parameter space the number of spikes accu-
mulate. Of course, such informations can be obtained only through direct numerical
simulations.
The next Section describes the model used and details regarding its nu-

merical solution on a large computer cluster. Then, we present and discuss
stability diagrams computed for the three cell populations, uncovering sev-
eral remarkable new dynamical regularities, in particular wide-ranging regular-
ities formed by certain non-spiral networks of shrimps. Another key finding
is the discovery of the startling spike unfolding organization summarized in
Figs. 6 and 7. Finally, we summarize and digress about a few enticing open
problems.

2 The three-cell cancer model and numerical details

The de Pillis-Radunskaya cancer model involves three cell populations, namely the
number of N normal, or host, cells, the number T of tumor cells, and the number
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I of immune cells. The dynamics of these populations is governed by three coupled
ordinary differential equations [7]:

Ṅ = rN(1− qN)− pTN, (1)

Ṫ = aT (1− bT )− cIT − eTN, (2)

İ = s+
ρIT

α+ T
− ξIT − ηI. (3)

These equations coincide with Eq. (3) of de Pillis and Radunskaya but have parame-
ters without subindices. The population of normal cells is controlled by the triplet
(p, q, r), tumor cells are governed by (a, b, c, e), while immune cells are controlled by
(s, ρ, α, ξ, η). In the first two equations, r and a control the logistic growth [21,22] of
N and T , respectively, while q and b control their corresponding carrying capacities.
The constant influx of immune cells is regulated by s, while η defines the death rate
in the absence of tumor. The accumulation rate of cytotoxic effector cells is controlled
by ρ and α. The remaining parameters define the magnitude of the several nonlinear
terms involved. To be meaningful, all parameters need to be non-negative constants.
As in previous works, we fix the following reference values: (p, q, r) = (1.5, 1, 0.6),
(a, b, c, e) = (1, 1, 2.5, 1), and (s, ρ, α, ξ, η) = (0, 1, 4.5, 0.2, 0.5). In the present paper
we focus on the dynamics observed in the planes p× ξ and r× ρ as highlighted in the
equations. As shown below in Fig. 4, the plane r× ρ displays a surprising number of
new dynamical facts.
In the literature, Eqs. (1)–(3) have been ordered in different ways, with parameters

named differently, to reflect the particular adimensional form selected for them [9–12].
Here, however, to avoid working with variables that may become singular, we stick to
the original unnormalized equations [7]. Obviously, an additional advantage of such
equations is that for suitable choice of parameters they may be reduced to all other
ones.
The individual phase diagrams given below in Figs. 1–6 record the analysis of

oscillations for selected regions of parameter space containing particularly rich dy-
namics. To produce the diagrams, each parameter window was covered with a mesh
of 1200 × 1200 = 1.44 × 106 equidistant points. Then, for each point, the temporal
evolution was obtained by integrating numerically Eqs. (1)–(3) using the standard
fourth-order Runge-Kutta algorithm with fixed time-step h = 0.01. In all diagrams,
integrations were always performed horizontally from left to right starting from an
arbitrarily chosen initial condition, (N,T, I) = (0.6, 3 × 10−4, 0.02), and proceeding
by “following the attractor”, namely by using the values of N,T, I obtained at the
rightmost end (when finishing the calculation of a horizontal line) to start the calcu-
lation for a new horizontal line, after incrementing the parameter vertically [23]. This
is a standard way of generating bifurcation diagrams, and the rationale behind it is
that, generically, basins of attraction do not change significantly for small changes
of parameters thus ensuring a smooth unfolding of the bifurcation curve. Of course,
there are also several regions characterized by multistability and no special effort was
done to select one specific attractor to mark them. We simply plotted the attrac-
tors as found by our algorithm. This procedure has the advantage of allowing one to
locate more easily where several stable solutions coexist. In this way, stability dia-
grams reflect somewhat the intricacies of the underlying basins of attraction.
As usually done, the first 2×105 integration steps were disregarded as a transient

time needed to approach the attractor, with the subsequent 40 × 105 steps used to
compute the Lyapunov spectrum. To find the number of peaks within a period, after
computation the Lyapunov exponents we continued integrations for an additional
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Fig. 1. Two alternative and complementary ways of representing the distribution of sta-
bility phases of the cancer model of de Pillis and Radunskaya,illustrating infinite sequences
of continuous spiral phases due to stable periodic oscillations. (a) Characterization using
Lyapunov exponents: the gray shadings indicate periodic oscillations (i.e. negative expo-
nents), while colors denote chaos (positive exponents). (b) Isospike characterization, colors
displaying the number of spikes in one period of N , the population of normal cells. Black
regions represent non-periodic oscillations (i.e. chaos). See text. Each panel displays the
analysis of 1200× 1200 = 1.44× 106 individual parameter points.

40×105 time-steps recording up to 800 extrema (maxima and minima) of the variable
of interest and checking whether pulses repeated or not. The computation of both
types of stability diagrams is a standard calculation that we performed as described
in detail, e.g., in Ref. [24] where efficient methods to deal with experimental data are
also given.
Before proceeding, we mention that the phase diagrams reported here involve

extensive computations made possible thanks to specially in-house ad hoc developed
message-passing programs, and to the decisive help of a SGI Altix cluster with 1536
high-performance processors having a theoretical peak performance of 16 Tflops.

3 Auto-organization of stable phases due to arbitrary oscillations

Figure 1a shows a standard Lyapunov stability diagram, obtained by plotting for
the aforementioned very fine parameter grid the largest non-zero Lyapunov expo-
nent. Lyapunov exponents are familiar indicators allowing one to discriminate unam-
biguously chaos (positive exponents) from periodic oscillations (negative exponents)
[25,26]. A very distinct and complementary representation of the same parameter
window is presented in Fig. 1b, in the form of an isospike diagram [15–20] namely,
a diagram obtained by counting the number of peaks (local maxima) contained in
one period of the periodic oscillations of a variable of interest, in this figure the pop-
ulation N of normal cells. All isospike diagrams represent spikes using a palette of
19 colors. Solutions having more than 19 spikes were plotted by recycling the 19 basic
colors “modulo 19”, namely by assigning them a color-index given by the remainder
of the integer division of the number of peaks by 19. Multiples of 19 are given the
index 19. Black is used to represent chaos (i.e. lack of numerically detectable pe-
riodicity/antiperiodicity), white and gold colors mark constant (i.e. non-oscillatory)
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(a) Spikes of N (b) Spikes of T
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Fig. 2. The number of spikes contained in one period of oscillation of the populations of (a)
normal cells N , (b) tumor cells T , and (c) immune cells I. Differences in colors show that
the number of spikes evolves rather distinctly when parameters are changed. In (a), boxes
A and B mark two of the numerous transition regions where the number of spikes increases
regularly as shown in Fig. 6a (magnification of box B), Fig. 6b (magnification of box A), and
summarized generically in Fig. 6c. Negative parameter values (below the white line) have
no meaning for cancer modeling.

solutions, if any, having respectively non-zero or zero amplitudes of the variable under
consideration.
Figure 1 shows a first important result: stable oscillations of the cancer model also

emerge organized forming infinite sequences of continuous spiral phases of stable peri-
odic oscillations of growing complexity as recently discovered in electronic circuits, in
several lasers, in chemical reactions, and in other dynamical systems [27]–[43]. Since
the rich dynamics of continuous and discontinuous spiral phases has been described
numerically and experimentally in details in a recent survey [24], we do not elaborate
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Fig. 3. Stability islands emerge organized forming two distinct sequences. (a) Standard
accumulation of shrimps [45–49]. (b) Accumulation involving an alternation of two-doubling-
flanked shrimps and three-doubling-flanked periodicity islands first observed in Mackey-
Glass delay-differential equations [36]. (middle row) (bottom row) Magnifications showing
Lyapunov (left) and isospike (right) diagrams for the region contained in the right box in
panel (b), illustrating the typical structure of two-doubling-flanked shrimps. (bottom row)
Magnifications showing Lyapunov (left) and isospike (right) diagrams for the left box in
panel (b), illustrating the typical structure of three-doubling-flanked periodicity islands of
systems with delayed feedback [36–38]. The Lyapunov diagrams seen on the left column
compare the very distinct inner organization of both structures. See text.

on them here, moving on to focus on new findings. After finishing this work, we found
a paper just published by Stegemann and Rech [44] reporting spirals for a Lyapunov
diagram equivalent to our p × ξ diagram seen on the left-hand-side of Fig. 1. We
remark that such spirals can be also found in other control planes, e.g. in the r × ρ
plane as seen in Fig. 4 below. As already mentioned, the focus of this paper is on
novel networks other than spirals.
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Fig. 4. Phase diagrams illustrating details of zig-zag networks accumulating along very
specific directions in control space. The top panel shows a wide region of the control space,
characterized here with the spikes detected in the population N of normal cells. The large
box seen on the top panel is shown magnified in the middle row, while its inner box seen
on the left is shown magnified in the bottom row. The middle row illustrates that number
of peaks change regularly but quite differently for N,T, I. Note the presence of continuous
spirals inside the leftmost box in the top panel. The boxes in the panels at the bottom row
mark birth regions of long ziz-zag networks. This birth is shown magnified in Fig. 5.

Comparing Figs. 1a and 1b one clearly sees that, despite the fact of being derived
in rather independent ways, the characterization using the isospike diagram agrees
very well with the standard Lyapunov stability diagram. In other words, the Lya-
punov diagram can be seen to validate the reliability of the isospike classification, a
validation that remains valid for all such diagrams below. Furthermore, comparing
Figs. 1a and 1b one sees that isospike diagrams are particularly helpful because, apart
from clearly separating periodicity from chaos, they simultaneously display how the
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Fig. 5. Details of the genesis of a long zig-zag network, characterized by (a) Lyapunov
exponents, and by the number of spikes of periodic oscillations of (b) N , (c) T , and (d)
I. While for the population N of normal cells the number of spikes remains constant, a
variegated change is seen for the population of tumor and immune cells, which seem to
undergo spike changes in a somewhat drifting synchrony.

spikes in waveforms of every periodic oscillation evolve as parameters are changed.
In other words, they display how the wave patterns of the model get more and more
complex when tuning parameter and, simultaneously, how to select parameters to
either increase or decrease wave pattern complexity, as desired. Accordingly, in what
follows we will mainly use isospike diagrams. We stress, however, that our programs
compute both diagrams simultaneously, and we have checked that both diagrams
invariably agree.
To count the number of spikes one obviously needs to select a specific variable

of the model. A natural question is then to ask whether or not all variables will
produce the same counting and, if not, where exactly do the countings differ. For an
extended region of parameters, Figure 2 answers both questions. Panel (a) displays
the spike distribution for the population of normal cells, (b) for the tumor cells, and
(c) for the immune cells. The panels also show negative values of ξ despite the fact
that such values have no meaning for the modeling. These negative values are shown
here simply to illustrate that the structural distribution of chaos and periodicity
changes continuously across the boundary between negative and positive values of
ξ, independently of its interpretation in the model. Note that when crossing the
boundary between negative and positive parameters in Fig. 2a there is an interchange
between 6 and 7 in the number of spikes in N while no interchange is observed for T
and I. Analogous interchanges do occur, however, for other values of the parameters.
An interesting question discussed below in connection with Fig. 6 is how the number
of spikes changes inside the stability phases.
A generic feature that may be easily recognized in Figs. 1 and 2 is the presence of

a characteristic alignment along certain directions of the stability islands formed by
oscillations having a number of spikes that grow without any bounds. Two such align-
ments can be seen along a slightly inclined direction in Fig. 3a and along the diagonal
in Fig. 3b. In Fig. 3a the alignment involves stability islands having always the same
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(a) Spikes tree for p = 2 (b) Spikes tree for p = 3

Fig. 6. Magnifications of the boxes in Fig. 2a displaying representative arborescent pat-
terns created by the smooth interfaces between regions of stable periodic oscillations of
N with distinct number of spikes (indicated by the numbers). Peak-adding occurs longi-
tudinally while peak-doubling unfolds transversally. (a) Unfolding beginning with p = 2.
(b) Unfolding beginning with p = 3. Identical unfoldings can be measured in the spikes of
T and I, in distinct parameter windows (see Fig. 2).

shrimp shape and structure as well-known for the Hénon map [49]. But the organiza-
tion shown in Fig. 3a is rather distinct. While shrimps are stability regions flanked by
two peak-doubling cascades to chaos, the organization in Fig. 3b consists of an (appar-
ently infinite) alternation of stability phases of two types: the usual shrimps alternate
with stability islands flanked by three peak-doubling cascades leading to chaos. This
alternation of two- and three-flanked structures was recently observed in the control
space of the Mackey-Glass system, a paradigmatic delay-differential equation, namely
a considerably more complex model describing a system with delayed feedback and
involving infinite degrees of freedom [36]. While the three-flanked structures could
be observed for the delayed feedback system, their internal structure was not deter-
mined. Here, the inner organization of the superstable-like (white) loci [46,48] seen in
the Lyapunov diagrams show unambiguously that two- and three-flanked structures
are indeed of a rather distinct kind and they both exist also in low-dimensional sets
of ordinary differential equations.
Figure 4a shows a distinct cut of the multidimensional parameter space of

Eqs. (1)–(3). This cut was selected because it displays a number of remarkable dy-
namical facts not seen before. First, the leftmost box in Fig. 4a contains periodicity
hubs and infinite sequences of spirals, as described above. This figure shows several
sequences of zig-zag networks that were recently reported for electronic circuits con-
taining a tunnel diode and for a laser [41]. While the previously known networks be-
came quickly too small to be observed without considerable magnifications, the cancer
model displays in a single picture very clear sequences of very long zig-zag networks.
Similarly to Fig. 2 above for distinct parameters, the middle and the bottom pan-
els illustrate the variation of the number of spikes in one period of the populations
of N,T, I. The regions containing networks in the panels in these rows show that,
while the number of spikes of normal cells maintains a constant number of spikes
over very large parameter windows, the spikes counted for tumor and immune cells
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Fig. 7. The generic spikes tree illustrating schematically the regular spike adding and dou-
bling mechanisms. Blue regions always contain odd periods. In the top stripe, the location
of the blue region depends of the numerical value of p.

grows systematically. Contemplating the various panels it is possible to recognize the
complicated way and the location where the number of spikes change.

Figure 5 shows magnifications of the boxes in the bottom row of Fig. 4. These
panels illustrate the peculiar way in which zig-zag networks are born. As before, while
the number of spikes in the population of normal cells remains constant over very large
ranges, the number of spikes counted in the populations of tumor and immune cells
grows without bound. The birth of a larger but more convoluted zig-zag network
can be seen in the panel at top of Fig. 4. Additional magnifications (not presented
here) show that the inner superstable loci evolve when parameters change, indicating
possibly that the zig-zag network may contain other structures than only shrimps,
or that the shrimps might be evolving continuously as the network grows. It is also
possible that the parameter cut shown in the figure is not optimal to expose the
full structure. A detailed analysis of this would, however, involve extended additional
computations and is therefore postponed.

Several diagrams above have shown that the number of spikes inN,T, I evolve con-
tinuously, changing smoothly and regularly in well-localized regions of the parameter
space. Since shrimp-legs contain infinite sequences of spike changes, it is natural to ask
how these transitions occur. Two representative examples of such transitions are illus-
trated in Fig. 6, where the numbers refer to the number of spikes characterizing the
region containing them. The figure depicts with more details the sequences of smooth
transitions contained in boxes A and B of Fig. 2 and shows that spike-adding occurs
longitudinally, i.e. along shrimp legs, while spike-doubling occurs predominantly in
the transverse direction.

The unexpected order underlying wave-form complexification by spike adding and
doubling is summarized schematically in Fig. 7. In this figure, the two outermost
stripes denote regions confining shrimp legs [45–49]. The boundaries b0 and b1 on the
top define a horizontal stripe s0 ≡ b1 − b0 where a main spike-number p changes to
p + 1 along a smooth boundary. In each subsequent stripe sk ≡ bk+1 − bk, for k =
1, 2, 3, . . . ,∞, the number of spikes grows from 2kp to 2k(p+1) by acquiring additional
spikes through smooth wave-pattern deformations similar to the ones observed in
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infinite dimensional systems involving delayed feedback [36–38]. The spike unfolding
illustrated in Fig. 7 is organized in a characteristic tree resembling a bifurcation
diagram. This arborescent organization may be observed profusely in other regions of
the control space, independently of the variable used to count the spikes. This same
organization was also observed it in other familiar systems like, e.g. in a tritrophic
food chain model, in the Hindmarsh-Rosen model, in a model of neocortical neurons,
in a model of a vertical-cavity surface-emitting laser (VCSEL), in a semiconductor
laser with injection, in Rössler’s oscillator, and in the self-pulsations of a CO2 laser
with feedback (see, for instance, Fig. 1b in Ref. [37]). All these corroborating evidences
will be reported elsewhere in due time. Therefore, we believe the spikes tree in Fig. 7
to be a generic and robust property of dissipative flows, a characteristic signature of
a systematic wave pattern complexification mechanism acting through spike-adding
continuous deformations of periodic oscillations in dissipative nonlinear systems.

4 Conclusions and outlook

We performed a detailed classification of the oscillatory behaviors, periodic or not,
supported by a three-cell population cancer model due to de Pillis and Radunskaya.
From biparametric stability diagrams interconnecting the populations of normal and
immune cells, one may recognize that the model is extremely rich from a dynamical
point of view, containing known and many hitherto unknown regularities. By com-
puting phase diagrams for all three model variables, we characterized both the size
and shape and the unexpected order underlying the organization of stability phases.
Our diagrams show precisely where the number of spikes changes as a function of the
cell population used to count them. Interestingly, while spikes in the population of
normal cells seems to remain constant over relatively extended parameter windows,
the populations of tumor and immune cells display a rich variation and seem to keep a
relatively constant difference between their number of spikes. We also found many sta-
bility islands which are simply too complicated to be classified systematically or to be
described by other means than purely graphically. Incidentally, recall that currently
there is no method to locate analytically stability phases for arbitrary oscillations, so
that the only way to find them is through direct numerical computations.
The cancer model displays an alternation of two- and three-doubling flanked struc-

tures known previously only for infinite-dimensional (delay) dynamical systems. Here,
the inner structure of the alternating structures could be clearly differentiated in terms
of Lyapunov exponent loci analogous to the well-known superstable loci defined for
one-dimensional maps [46]. Novel comet-like structures were found abundantly (see
Fig. 4). Such wide-ranging parameter connections are potentially interesting to select
oscillations with prescribed characteristics of interest. Note that the information in
our phase diagrams allows one to effectively control the dynamics, namely to select the
final dynamical state precisely by performing just a single change of parameters. This
is in sharp contrast with conventional methods of controlling the dynamics [50,51],
which require pre-investigating unstable orbits, do not include a prescription for the
precise selection (targeting) of the final state, and require the permanent application
of external perturbations.
There are a number of enticing open problems associated with the stability dia-

grams reported here. From the point of view of applications, they provide reference
charts against which one may compare analogous charts computed for other models
and address optimal control therapies. For instance, in the framework of the present
model it would be interesting to investigate the effect of a constant influx of immune
cells into the system, a process regulated by s in Eq. (3). When neglecting the con-
stant influx of effector cells, Itik and Banks assumed the effector cells to be cytotoxic
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T-cells which do not respond to tumor cells unless activated by antigen presenting
cells. The activation mechanism of the immune system depends on the antigenicity
of the tumors and, to start, seems to justify neglecting the influx of activated effector
cells.
de Pillis and Radunskaya associated the long-term behavior of the oscillations

according to the basin of attraction in which they start, indicating that the addi-
tion of drug terms to the system can move solutions into desirable basins, namely
basins characterizing healthy dynamics. Our phase diagrams reveal a great number
of situations for which it would be interesting to perform detailed phase-space analy-
sis. Of particular interest are the limit sets of the various parameter accumulations
contained in our diagrams. The investigation of different cuts of parameter space re-
mains totally open, in particular the question if both logistic terms produce or not
dynamically equivalent stability phases.
In summary, although relatively simple, the nonlinearities underlying the cancer

model investigated produce rich and unexpected dynamical facts. Future work should
tell if the scenarios found for this model are also present in more sophisticated models
which include, e.g. drug resistance or more specific immune cell types. Isomorphically,
it would be interesting to check if the novelties found for the cancer model can be
traced also in Lotka–Volterra type dynamics. In particular, to look for the beautiful
spikes tree of Figs. 6 and 7 in other models.
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