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We report a detailed investigation of the stability of a CO2 laser with feedback as described by a

six-dimensional rate-equations model which provides satisfactory agreement between numerical

and experimental results. We focus on experimentally accessible parameters, like bias voltage,

feedback gain, and the bandwidth of the feedback loop. The impact of decay rates and parameters

controlling cavity losses are also investigated as well as control planes which imply changes of the

laser physical medium. For several parameter combinations, we report stability diagrams detailing

how laser spiking and bursting is organized over extended intervals. Laser pulsations are shown to

emerge organized in several hitherto unseen regular and irregular phases and to exhibit a much

richer and complex range of behaviors than described thus far. A significant observation is that

qualitatively similar organization of laser spiking and bursting can be obtained by tuning rather dis-

tinct control parameters, suggesting the existence of unexpected symmetries in the laser control

space. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4916923]

CO2 laser with feedback is a complex system that has been

investigated extensively both experimentally and through

numerical simulations. As a result, a highly tested model

exists for this laser, famed for providing quite satisfactory

agreement between numerical and experimental observa-

tions. However, the laser involves a large number of freely

tunable control parameters, whose impact on the laser

performance and stability has not yet been investigated. In

the present paper, we bridge this gap by performing a sys-

tematic numerical classification of complex dynamical

phenomena observed in the CO2 laser with feedback as a

function of its several control parameters. More specifi-

cally, we report high-resolution stability diagrams for ac-

cessible control parameters and for parameters that imply

more subtle changes of the physical characteristics of the

laser medium. Such diagrams describe the self-

organization and the extension of stable spiking and burst-

ing laser phases. Laser pulsations are shown to display

novel regular and irregular features. In particular, our

stability diagrams suggest that the laser control space har-

bors remarkable symmetries that were not yet accounted

for but which are experimentally accessible. In addition,

our stability diagrams provide stringent tests of the reli-

ability and accuracy of the laser model investigated, cur-

rently the best model available for such laser.

I. INTRODUCTION

The dynamics of the CO2 laser1,2 has been the subject of

several investigations in recent years.3–5 Of particular

interest is to learn how to optimize the use of this powerful

laser in applications and how to extract new theoretical

insight from the knowledge of its dynamical characteristics.

The reasons for the interest in this type of lasers come from

many applications such as, e.g., coupling several lasers to-

gether to bypass the power limitations of individual lasers.

Coupling lasers involves a plethora of new and unanticipated

phenomena, such as, for example, the abundant emergence

of random spiking and bursting, the synchronization of

strongly pulsating lasers, and several other phenomena.4–7

About thirty years ago, CO2 lasers were used in pioneer-

ing experiments to verify phenomena and scenarios pre-

dicted in the emergent field of nonlinear dynamics. The

reason was due to the CO2 laser versatility and relative

handiness of its custom realization in well-equipped labora-

tories. In this framework, the observation of deterministic

chaos in CO2 lasers with cavity modulation near the relaxa-

tion frequency was of primary importance.8–13 From this

experiment, other observations followed, confirming that

chaos is also present in an autonomous configuration such as

the CO2 laser with optoelectronic feedback.14 Nowadays,

applications involving optoelectronic and optical feedbacks

in semiconductor lasers are widespread, specially in the field

of secure communications which rests on the phenomenon of

chaotic synchronization between a master and a slave

laser.5,6

To better understand the aforementioned phenomena in

coupled lasers, one first needs a thorough understanding of a

single CO2 laser. The solitary laser involves a large number of

freely tunable control parameters whose impact on its stability
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and performance, despite the large literature available, has not

yet been investigated. Here, our aim is to bridge this gap

through a systematic numerical classification of complex dy-

namical phenomena observed in the CO2 laser with feedback

as a function of its control parameters. More specifically, we

present detailed stability diagrams for two situations, namely,

for easily accessible control parameters, and for parameters

not so easily accessible, that imply more subtle changes of the

physical characteristics of the laser medium.

In Sec. II, we present the most significant steps in devel-

oping the laser model used here. Then, we introduce the

model (Sec. III) and explain how to obtain high-resolution

stability diagrams for the model (Sec. IV). Sec. V reports sta-

bility diagrams for several control parameter planes and

describes their features. Finally, Sec. VI summarizes our

conclusions and some open problems. In resonance with this

focus issue of Chaos, our paper reviews what has already

been done concerning CO2 lasers with opto-electronic feed-

back, a very fruitful laser system, pointing out several attrac-

tive perspectives for future research.

II. GENESIS OF THE MODEL

The simplest approach to model the dynamics of a

single-mode homogeneously broadened CO2 laser is by

using two rate equations, one for the laser intensity and one

for the population inversion between the two resonant levels.

This description is appropriate for a class B laser, in the clas-

sification introduced by Arecchi et al.15 The two-level model

was used to interpret the chaotic dynamics emerging in this

kind of laser when an electro-optic feedback is introduced.

When complemented by a third equation describing the

opto-electronic feedback, the two-level laser equations pro-

vide the basic three-dimensional model necessary to foresee

local bifurcations leading to chaos after the destabilization of

a limit cycle14 and global bifurcations related to the presence

of a homoclinic connection in the phase-space.16 This work

suggests how to observe competing instabilities by operating

a CO2 laser with feedback in a parameter range with coexist-

ing equilibrium points. From local chaos originated around a

stationary solution with nonzero laser output intensity

(named solution “1”), it is possible to observe a transition to

homoclinic chaos of the Shilnikov type around an apparent

saddle focus (named solution “2”). In this regime, the trajec-

tories also visit the unstable solution with zero laser output

intensity (named solution “0”). For further details, see Figs.

2 and 3 of Ref. 16. Subsequent investigations revealed that it

is not possible to find a stationary solution associated with

this apparent saddle focus. This subtle and intriguing aspect

in the global dynamics led to the investigation in more detail

of the Q-switching dynamics of the CO2 laser related to the

build-up process of the laser intensity originating from a

spontaneous emission process when the laser is below

threshold. Such analysis revealed that the two-level model is

not adequate to fit experimental observations. To overcome

this difficulty, a four-level model was introduced. Such

model accounts for non-radiative couplings of the two reso-

nant levels of the vibrational bands to which they belong. A

precise description of the passive Q-switching in a CO2 laser

with intracavity saturable absorbers was given in Refs.

17–19. Such a configuration also led to the observation of

homoclinic chaos.20–25 The CO2 laser with saturable

absorber is equivalent to the CO2 laser with feedback in the

sense that homoclinic chaos is observed in both of them.

Later, the transient behavior in CO2 lasers with slowly

swept parameters around the laser threshold was explained

by the four-level model with equal relaxation rates for the

two vibrational bands.26 In this experiment, the features of

the relaxation oscillations affecting the laser intensity after

the crossing of the laser threshold have been characterized

depending on the sweep rate of the cavity losses. Exploring

laser dynamics near the laser threshold, another feature

appears when the pump parameter is slowly swept, that is,

the presence of a delayed bifurcation. Such a phenomenon,

theoretically foreseen by Mandel and Erneux,27 was experi-

mentally observed and correctly explained by the four-level

model for the CO2 laser.28

The analysis of the dynamical behavior of a Q-switched

CO2 laser revealed that the laser intensity in the nonlinear

amplification regime and the long time relaxation process to

the steady state are correctly explained only by using the

four-level model with different relaxation rates of the two

vibrational bands.29 On the other hand, in the linear amplifi-

cation regime, both models produce the same result. In the

case of chaotic dynamics obtained by means of sinusoidal

modulation of cavity losses or by opto-electronic feedback,

the same considerations are still valid reinforcing the ade-

quacy of the four-level model. The four-level model for the

CO2 laser consists of five differential equations involving the

laser intensity I, the population of the lasing levels N1 and

N2, and the global population of the rotational manifolds M1

and M2. Consequently, the dynamics of a CO2 laser with

electro-optic feedback is ruled by a set of six differential

equations (six dimensional model). From a theoretical point

of view, the validity of the four-level model was demon-

strated by a global application of center manifold theory

allowing the reduction of the number of variables from six to

four.30

Successive experimental confirmations of the adequacy

of the six dimensional model are reported in Ref. 31, where

evidence of stabilization of periodic solutions embedded in

the chaotic attractor of this system is provided. The adopted

strategy to control chaos is based on the introduction of an

additional feedback loop where a selective filtering of the

subharmonic components of the chaotic laser intensity signal

is performed. The final result of this filtering process is the

rejection of the undesired subharmonic components respon-

sible for chaos and the enhancement of the fundamental fre-

quency component associated with the limit cycle stabilized

in the phase space. The stabilization of homoclinic chaos to

the fixed point solution in the phase space was demonstrated

by the use of a derivative filter on the laser output intensity.32

Also, in such a case, the six dimensional model is particu-

larly suited for describing the controlled trajectory to the

only existing fixed point solution with nonzero intensity.

Another class of experiments, exploring the role of cha-

otic synchronization induced by a sinusoidal forcing or by

noise added in the feedback loop, drew attention to the high
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susceptibility of the system in the vicinity of the saddle

focus.33 Since a small perturbation, including noise, is able

to modify the global dynamics from chaos to periodicity and

vice-versa, synchronization can be easily obtained in a chain

of CO2 lasers in the homoclinic regime with nearest neighbor

coupling.34,35

III. SIX-DIMENSIONAL MODEL

The six-dimensional model of a CO2 laser with feedback

is defined by the following nonlinear ordinary differential

equations:36,47

_x1 ¼ k0x1ðx2 � 1� k1 sin2ðx6ÞÞ; (1)

_x2 ¼ �C1x2 � 2k0x1x2 þ cx3 þ x4 þ P0; (2)

_x3 ¼ �C1x3 þ x5 þ cx2 þ P0; (3)

_x4 ¼ �C2x4 þ cx5 þ zx2 þ zP0; (4)

_x5 ¼ �C2x5 þ zx3 þ cx4 þ zP0; (5)

_x6 ¼ bðB0 � x6 � Rx1=ð1þ ax1ÞÞ: (6)

In these equations, x1 represents the laser output intensity, x2

the population inversion between the two resonant levels,

while x6 stands for the feedback voltage signal which con-

trols the cavity losses. These three coupled variables are suf-

ficient to generate chaos. However, as discussed above, due

to the interplay of the different energy levels of the CO2 mol-

ecule, one must introduce three additional variables acting as

linear filters, thereby increasing the overall dimension of the

phase space from three to six.

The variables x3, x4, and x5 account for exchanges

between the two molecular levels resonant with the radiation

field and the other rotational levels of the same vibrational

band of the molecule. The parameter k0 controls the unper-

turbed cavity loss, k1 determines the modulation strength, c
is the coupling constant, C1 and C2 are population relaxation

rates, P0 the pump parameter, z represents the effective num-

ber of rotational levels, and b;B0;R; a are, respectively, the

bandwidth, the bias voltage, the amplification, and the satu-

ration factors of the feedback loop. Following Pisarchik

et al.,36 as reference parameters for our calculations, we fix

C1 ¼ 10:0643; C2 ¼ 1:0643; a ¼ 32:8767, b ¼ 0:4286; k0

¼ 28:5714; k1 ¼ 4:5556, z¼ 10, c ¼ 0:05, R¼ 160, B0

¼ 0:1026, and P0 ¼ 0:016.

IV. COMPUTATIONAL DETAILS

Our results are displayed in two complementary types of

stability diagrams: (i) the standard stability diagram based

on Lyapunov exponents,37,38 and (ii) the novel isospike dia-

grams,39–46 a more fruitful type of stability diagrams based

on counting the number of spikes contained in one period of

the periodic oscillations.

To produce the stability diagrams, a parameter window

of interest is covered with a mesh of N�N equidistant

points. For each point, the temporal evolution is obtained by

integrating numerically Eqs. (1)–(6) using the standard

fourth-order Runge-Kutta algorithm with fixed time-step

h¼ 0.01.

In the diagrams presented in Fig. 1, integrations were

performed by scanning parameters horizontally from left to

right, starting from an arbitrarily chosen initial condition,

ðx1; x2; x3; x4; x5; x6Þ ¼ ð0:0011; 1:01; 1:05; 10:05; 10:3; 0Þ;

proceeding to the right by “following the attractor,” namely,

by using the values of x1; x2; x3; x4; x5; x6 obtained at the end

of a calculation for a given parameter to start a new calcula-

tion after incrementing the parameter horizontally. In other

words, instead of re-initializing initial conditions after

changing the parameter, we simply kept the conditions that

were already stored in the computer buffer due to the previ-

ous computation. This procedure was repeated for every pa-

rameter in the vertical axis. Similarly, in Figs. 2, 3, and 6,

parameters were scanned horizontally but from right to left.

In Figs. 4, 7, and 8, the initial condition above was used for

all points on the mesh. These initializations guarantee that

the integrations were not trapped by unimportant fixed

points. In all cases, the first 2� 105 integration steps were

discarded as a transient time needed to approach the attrac-

tor. The subsequent 40� 105 steps were used to compute the

six exponents forming the Lyapunov spectrum.

To obtain isospike diagrams, namely, to find the number

of spikes in a period of the oscillations, subsequent to the

computation of the Lyapunov exponents, we continued inte-

grations for an additional 40� 105 time-steps recording up

to 800 extrema (maxima and minima) of the variable of in-

terest and checking whether pulses repeated or not. In the

isospike diagrams, we use a palette of 17 colors to represent

the number of spikes contained in one period of the oscilla-

tions, as indicated by the colorbars in the Figures. Patterns

with more than 17 spikes are plotted by recycling the 17 ba-

sic colors modulo 17. Black represents “chaos” (i.e., lack of

numerically detectable periodicity), white and orange colors

mark non-oscillatory solutions, if any, having, respectively,

non-zero or zero amplitudes of the variable under considera-

tion. Isospike diagrams can be also efficiently implemented

to deal with experimental data.43

V. STABILITY DIAGRAMS

We start by comparing both types of stability diagrams

described in Sec. IV. They are plotted for the parameters

considered most frequently in the literature, namely, as a

function of the feedback gain R and the bias voltage B0.

The leftmost panel of Fig. 1 shows a standard Lyapunov

stability diagram for the laser. In this diagram, gray shad-

ings represent periodic oscillations (i.e., negative expo-

nents) while the colors denote chaos (positive exponents).

A similar Lyapunov stability diagram showing a smaller

stability region and slightly distinct parameter values was

given in Fig. 5(c) of Ref. 47. In contrast, the rightmost

panel shows the isospike diagram corresponding to the

Lyapunov diagram.

Comparing both diagrams on the top row of Fig. 1, it

becomes obvious that the isospike diagram contains much
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more information than the Lyapunov diagram. Both dia-

grams clearly discriminate regular from chaotic oscillations.

However, the isospike diagram informs simultaneously how

the complexification of the laser signal occurs, i.e., it shows

how to tune parameters in order to obtain more and more

spikes in the laser oscillation via continuous deformations

that create and destroy peaks, as described recently for the

infinite-dimensional Mackey-Glass delayed feedback sys-

tem48 and for a CO2 laser with feedback model governed by

three differential equations.49 From now on, we will describe

laser stability using the more detailed diagrams obtained by

classifying systematically the number of spikes of the laser

oscillations.

Both panels on the top row of Fig. 1 contain triplets of

dots labeled A, B, C; D, E, F; and G, H, I. Such points are

the first ones of an apparently infinite sequence of analogous

points lying inside certain complex structures

(shrimps13,44,47,50–52). These sequences of points accumulate

towards a large region on the right-hand-side containing the

number 3 and representing periodic laser oscillations with

three-spikes per period. Panels (a) to (i) of Fig. 1 show how

the laser signal changes along the first three of these sequen-

ces of points. The period T‘ (arbitrary units) seems to grow

continuously

ðTA; TB; TC;…Þ ¼ ð213:57; 300:32; 386:03;…Þ; (7)

ðTD; TE; TF;…Þ ¼ ð242:70; 327:61; 411:98;…Þ; (8)

ðTG; TH; TI;…Þ ¼ ð245:91; 329:97; 414:10;…Þ: (9)

But, the number of spikes shows a remarkable behavior:

While the number of spikes cover uniformly the main body

FIG. 1. Two alternative representations of the laser stability as a function of the feedback gain R and bias voltage B0. Top left: standard Lyapunov stability dia-

gram,13 where gray shadings mark periodic oscillations (negative exponents), and colors denote chaos (positive exponents). Top right: Isospike diagram (see text),

where colors display the number of spikes in one period of the laser intensity x1 and black denotes chaos (i.e., lack of numerically detectable periodicity). The iso-

spike diagram contains by far much more information than the Lyapunov diagram. The number 3 marks the domain towards which both 3-spikes adding cascades

accumulate. Panels (a)–(i) show temporal evolutions of intensity pulses for selected parameters, indicated by labeled dots in both diagrams. The oscillation periods

T‘ are given in the text. Black arrows in panels (g)–(i) indicate where new peaks are born (see text). For convenience, the vertical axis shows 103x1.
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FIG. 2. Distribution of spikes as a function of the six dynamical variables used to count the spikes in one period of (a) x1ðtÞ, (b) x2ðtÞ, (c) x3ðtÞ, (d) x4ðtÞ, (e)

x5ðtÞ, and (f) x6ðtÞ. Black represents chaos (i.e., non-periodic spiking). White marks a region of constant but non-zero continuous wave laser intensities. In (a),

the small white rectangle at the center of the black box marks the region enlarged in Fig. 1. Chaotic laser spiking is confined to comparatively small regions.

FIG. 3. (a) Nonchaos-mediated spike-adding sequences of mixed-mode oscillations45 recorded in the laser intensity oscillations as a function of the pump

parameter P0 and the bias voltage B0. This control plane is dominated by large domains of zero and non-zero continuous wave laser intensities. (b)

Magnification of the black rectangle seen in (a). (c) Bifurcation diagram displaying maxima of the laser intensity, x1, illustrating the build-up of the

spike-adding sequence along de black line in panels (a) and (b) when P0 and B0 are increased simultaneously. (d) Details of the spike-adding sequence inside

the violet box in (c).
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of the shrimps50,51 forming the sequence A;B;C;…, the

main body of the sequences D;E;F;… and G;H; I;… are

split into two separate domains characterized by distinct

number of spikes. Uniform accumulations of spikes were

observed before.47 But, as far as we know, shrimps contain-

ing double accumulations like the sequences D;E;F;… and

G;H; I;… have not been observed before. Note that all three

spike-adding accumulations involve the addition of three

spikes, which is the number of spikes of the domain towards

which they accumulate very fast.

The time evolutions in Figs. 1(a)–1(i) suggest regular-

ities in the steady complexification of laser patterns: Each

family seems to be a concatenation of a few fixed combina-

tions of quasi-identical patterns where the rightmost end of

the wave pattern gets more and more extra spikes as one

moves towards the accumulation boundary. This situation is

reminiscent of behavior found recently in the Mackey-Glass

delayed feedback system,48 a mathematically more compli-

cated system, described by an infinite-dimensional set of

equations. A detailed investigation of these concatenated pat-

terns will not be pursued here.

Since we consider a six dimensional model for the laser,

a natural question to ask is whether or not the distribution of

spikes depends on the specific dynamical variable used to

count them. To check this, Fig. 2 presents six stability dia-

grams, one for each variable x‘. This figure shows unambigu-

ously that the recorded spikes distribution depends strongly

on the variable used. It is also clear that the boundaries of

the spiking phases lie in different positions. Curiously, the

spiking phases seem to roughly organize themselves into

three similarity classes, in the sense that each pair of varia-

bles (x1, x6), (x2, x4), and (x3, x5) produces a somewhat simi-

lar distribution of spikes. It is also manifest that the diagrams

obtained for the variables (x2, x4) somewhat interpolate the

diagrams obtained for the pairs (x1, x6) and (x3, x5). It is note-

worthy here that while x1 (the laser output), x2 (the popula-

tion inversion), and x6 (the feedback voltage) are more easy

to be accessed experimentally, the remaining triplet

x3; x4; x5, accounting for exchanges between the molecular

levels resonant with the radiation and other rotational levels

within the same vibrational band, is not directly accessible to

experimentation.

Figure 2 depicts a much larger region of the laser control

space than the one shown in Fig. 1 and shows that the com-

plexification of the laser intensity occurs via nonchaos-

mediated mixed-mode oscillations.45 Another important

piece of information provided by Fig. 2 is that periodic spik-

ing (represented by non-black phases) is by far the dominant

behavior in this control plane of the laser. In other words, the

black color representing chaos and seen extensively in Fig.

1, in fact, exists only in comparatively small regions of this

control space. As illustrated in Figs. 3–4 and 6–8, this state-

ment remains true for other sections of the control space.

How does the distribution of spikes looks like when

recorded in other control parameter planes of the laser? This

question is answered in Figs. 3–8 obtained by counting

spikes of the laser intensity x1. Figure 3 shows a global view

of the control plane defined by the pump parameter P0 and

the bias voltage B0. As illustrated in Fig. 3(a), this space is

dominated by large domains of zero and non-zero continuous

FIG. 4. (a) Nonchaos-mediated spike-adding sequences of mixed-mode oscillations recorded as a function of k0, the control of the unperturbed cavity losses,

and k1, the modulation strength. This control plane is dominated by periodic laser spiking. The mosaic-like pattern inside the vertical rectangle is enlarged in

Fig. 7. (b) Magnification of the black horizontal rectangle in (a). (c) Magnification of the leftmost rectangle in (b). (d) Magnification of the rightmost rectangle

in (b). The number 3 marks the domain towards which both 3-spikes adding cascades accumulate. Note the similarity of the shrimp accumulations in this panel

with the ones in Fig. 1.
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wave (CW) laser intensities. Separating these two domains,

there is a stripe of parameters along which one sees a pleth-

ora of laser oscillations organized in a regular way. Similar

to what happens in the plane R� B0 (Fig. 2), the plane P0 �
B0 also shows that the complexification of the laser intensity

occurs via nonchaos-mediated spike-adding mixed-mode

oscillations. This is corroborated clearly by the bifurcation

diagrams in Figs. 3(c) and 3(d). Such diagrams were drawn

by tuning both parameters, P0 and B0, simultaneously along

a portion of the black auxiliary line seen in panels (a) and

(b). The vertical lines in (c) and (d) indicate the position of

the four representative points A;B;C;D marked in the stabil-

ity diagrams [Figs. 3(a) and 3(b)].

Figure 4 shows the distribution of laser phases recorded

for the parameter section defined by the unperturbed cavity

losses k0 versus the modulation strength k1. This plane con-

tains a remarkable feature, namely, the mosaic-like tiling

that accumulates from right to left inside the vertical rectan-

gle seen on the left side of Fig. 4(a). Such tiling consists of

an apparently infinite sequence of stability phases that arises

from the regular way that spikes are added to the laser inten-

sity pulse when both parameters are tuned. As may be seen

from the figure, the mosaic consists of adjacent phases char-

acterized by waveforms were the number of spikes grows

horizontally from right to left as k0 decreases, and grows

from bottom to top, as k1 increases. This type of change

implies the existence of two types of parameter paths—one

for “horizontal” nonchaos-mediated spike-adding sequences

of mixed-mode oscillations and another one, transversal, for

“vertical” sequences. Note that observation of such mosaic

requires tuning two parameters simultaneously, something

not usually done in experiments.

The parameter region inside the rightmost rectangular

box in Fig. 4(a) is shown magnified in Fig. 4(b), and the pair

of boxes in it are enlarged in Figs. 4(c) and 4(d). Figures 4(c)

and 4(d) illustrate regions where chaos is quite abundant.

Figure 4(c) shows a typical configuration found in many pla-

ces in control space: oscillatory lasers modes emerge organ-

ized in very complicated ways which are simply too

complex to be described by other than graphical means. In

sharp contrast, Fig. 4(d) shows infinite sequences of phases

displaying the same regular spike-adding systematics already

found in the upper panels in Fig. 1, accumulating also

towards a large laser phase where the intensity pulses contain

three spikes per period.

How similar are the mixed-mode oscillations observed

in the CO2 laser with feedback when parameters are tuned?

The answer is given in Fig. 5, which illustrates the great sim-

ilarity of mixed-mode oscillations typically observed when

tuning rather distinct control parameters of the laser. In the

top row of Fig. 5, we plot the first four of an apparently

infinite sequence of consecutive spike additions observed

in the P0 � B0 control plane. These four panels correspond

to the points labeled A;B;C;D in Fig. 3(a), with coordinates

ðP0;B0Þ¼ð0:0148;0:06Þ; ð0:0152;0:08Þ;ð0:0156;0:1Þ; ð0:016;
0:12Þ, respectively. For comparison, the bottom row shows

an analogous sequence, but observed while tuning

parameters in the k0�k1 plane for points A0;B0;C0;D0 in

Fig. 4(a), with coordinates ðk0;k1Þ¼ð48;2:6Þ; ð45;3:666Þ,
ð41;5:088Þ; ð37:3;6:404Þ, respectively. Noteworthy is the

fact that, although the periods of both sequences of spikes

are initially very different, after just four spike additions,

they already are of the same order of magnitude, suggesting

that the growth of the period may not be unbounded.

Figure 6(a) shows a global description of the spike

unfolding recorded on the R� P0 control plane. This plane

also shows regular laser pulsations organized according simi-

lar spike-adding scenarios as previously found in other con-

trol planes. In contrast with previous situations, in this

parameter plane it is quite easy to follow spike-adding

sequences by tuning just a single parameter, R, instead of a

pair of parameters, as before. Furthermore, as illustrated in

Figs. 6(b) and 6(c), it is not any path across the control space

that will reveal its regular organization and mixed-mode

oscillations. For instance, as depicted in panels 6(d)–6(f),

bifurcations along vertical one-parameter lines will typically

result in rather unusual series of spikes, mediated or not by

chaos. To uncover the mechanism responsible for such com-

plex and apparently non-systematic spike unfoldings remains

an open challenge.

The temporal evolutions in Figs. 6(d)–6(f) show a close

resemblance to those in Fig. 5, despite the fact that they are

obtained by sweeping rather distinct parameters. The high

number of parameters involved and the great variety of

spikes arrangements that were observed prevents one from

attempting a general classification. But, such classification is

FIG. 5. Two similar looking sequences of spike-adding mixed-mode oscillations recorded while tuning rather distinct laser control parameters. Top row: tem-

poral evolutions for points labeled A, B, C, D on the P0 � B0 plane of Fig. 3(a). Bottom row: temporal evolutions for points A0; B0; C0; D0 on the k0 � k1 plane

of Fig. 4(a). Here, T indicates the period of the oscillations in arbitrary units. For convenience, the vertical axis shows 103x1.
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obviously an important and enticing problem that needs to

be eventually addressed.

We now investigate what happens with the laser inten-

sity in Fig. 7(a), a magnification of the leftmost (vertical)

rectangle in Fig. 4(a). As already mentioned, this region con-

tains large stability phases forming a mosaic-like tiling that

accumulates in Fig. 7(a) from right to left and from bottom

to top. We consider the waveforms along two representative

stripes of such tiling: for the points A, B, C along the line

k1 ¼ 8:5, and for points D, E, F along k1 ¼ 6:5. As evi-

denced by Figs. 7(b)–7(g), the complexification of the wave-

forms underlying the mosaic-like tiling involve two

concurrent mechanisms which act on the large plateau con-

tained in the periodic oscillations: when parameters are

tuned, the plateau develops more and more undulations on

both extremities. On the left-hand-side of the plateau, one

finds a complexification that unfolds in a similar way as al-

ready described in Fig. 5 for the mixed-mode oscillations.

The novelty here is that, simultaneously, there is a

complexification at the right-hand-side extremity of the pla-

teau, also by the addition of spikes. Thus, the mosaic-like til-

ing accumulation seems to originate from a double winding

of the trajectories in phase-space. While double windings

have certainly been described abundantly in connection with

homoclinic orbits and with other sophisticated forms of

unstable mathematical phenomena, we are not aware of the

impact of any of these phenomena being described in param-

eter space. In contrast with unstable homoclinic phenomena,

the double winding mentioned here (i) is manifestly con-

nected with stable trajectories, (ii) is clearly responsible for

inducing regularities in large portions of the control parame-

ter space. Recall that, while there is a profusion of studies

dealing with the intricacies of complex phenomena in phase-

space, most of them refer to systems whose laboratory imple-

mentation is difficult. Our diagrams, however, display the

global organization of stability phases and, therefore, are

directly measurable with present day technology. For

instance, a recent comparison between measurements and

FIG. 6. (a) Global view of the spikes distribution in the R� P0 plane illustrating spike-adding cascades and predominance of CW laser modes. (b)

Magnification of the box in (a) showing (in black) the presence of chaotic laser bursting. (c) Bifurcation diagram displaying intensity maxima obtained for

R¼ 89, along the vertical line in (b). (d)–(f) Laser intensity for A, B, C as indicated in panels (b) and (c). Here, T denotes the period of the oscillation (arbitrary

units). For convenience, the vertical axis shows 103x1.

FIG. 7. (a) Enlargement of the vertical rectangle in Fig. 4(a) illustrating the a mosaic-like pattern and remarkable systematic shifts of the laser pulsations.

(b)–(g) Temporal evolutions of the laser pulses showing the genesis of new spikes [through waveform deformations48,49] underlying the mosaic-like pattern.

The respective period of oscillation are TA ¼ 300:58; TB ¼ 342:09, TC ¼ 377:97; TD ¼ 172:47; TE ¼ 210:46, and TF ¼ 245:92, in arbitrary units. Such tiling

repeats over an extended region of the control space. For convenience, the vertical axis shows 103x1.
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predictions for an electronic device found them to be in

rather good agreement over wide two-dimensional control

parameter windows.43

Is the mosaic-like tiling a particularity of the k0 � k1

control plane (Fig. 7), or is it a generic feature? To check

this, we computed high-resolution phase diagrams for the

control plane defined by the bandwidth a and amplification b
of the laser, shown in Fig. 8. As it is evident from Fig. 8(a),

this control plane also displays a mosaic-like tiling. As

before, this plane shows a large predominance of periodic

over chaotic laser modes.

At the bottom of Fig. 8(a) one sees a thin rectangular

box, shown magnified in Fig. 8(b). From this magnification,

one sees that chaos (represented in black) arises from certain

“wrinkles” that develop in the phases of regularity that, for

larger values of b, combine to form the mosaic-like tiling.

Although chaotic phases are quite small compared to the

overwhelmingly large regular phases, they can be probed

experimentally without problem with modern technology. In

fact, as discussed in Sec. II, chaos in CO2 lasers with feed-

back was already reported in many experiments. What is still

open is a systematic experimental scan of the control param-

eter space, similar to what was done here numerically.

Experimental scans can either corroborate the modeling or

uncover shortcomings of the equations used in the numerical

analysis.

The chaotic phases of the CO2 laser with feedback are

full of rich dynamics, also waiting for a systematic explora-

tion. For instance, Fig. 8(c) shows a magnification of the box

in Fig. 8(b). This figure illustrates once again the complex

alternation of chaotic and regular stability phases of the

lasers, similar to the situation described above for Fig. 4(c).

However, chaotic phases also harbor wide regions of regular-

ity, as exemplified by Fig. 8(d), an enlargement of the rectan-

gle in Fig. 8(c). Figure 8(d) illustrates an infinite sequence of

spirals of chaos and spirals of regularity that arise around

certain exceptional points in control space, called periodicity

hubs, well-known to organize the dynamics over extended

parameter regions.44,53–57 The exceptional point responsible

for the large anti-clockwise spiraling in Fig. 8(d) is located

at the periodicity hub F, numerically estimated to be near

F ¼ ða; bÞ ¼ ð297:85; 0:3431Þ. An infinite quantity of simi-

lar hubs is known to exist in the vicinity of F, as elaborated

in Refs. 55 and 56. Summarizing, intricate alternations of

chaos and regularity can be observed abundantly in every

section of the control space.

VI. CONCLUSIONS

We presented an exhaustive analysis of the control pa-

rameter space of the CO2 laser in the sense that all major

combinations of control parameters were considered. This is

a significant addition to the field and opens new possibilities

of investigation. Earlier experiments considered only the

bias B0 as variable, keeping all other parameters fixed. After

that, the influence of the bandwidth b was also considered.

Experimentally, it is clear that k0 and k1 are difficult to tune

although something could be done. Changes of the pump pa-

rameter P0 were not yet considered. However, as shown by

Figs. 3, 5, and 6, variations of P0 produce quite interesting

results. The parameters b and a are difficult to scan experi-

mentally, in particular, a which is related to the saturation in

the detection of the laser intensity. Thus, the stability dia-

grams reported here suggest a number of new and interesting

FIG. 8. (a) Mosaic-like pattern in the bandwidth a versus amplification b control plane. (b) Magnification of the box in (a) illustrating the presence of

“wrinkles” (see text). (c) Magnification of the box in (b). (d) Magnification of the box in (c) illustrating an infinite hierarchy of nested spirals of chaos and of

regularity converging to the focal hub F near ða;bÞ ¼ ð297:85; 0:3431Þ.
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experimental explorations. Furthermore, they predict explic-

itly parameter intervals likely to contain rich dynamics.

From the point of view of simulations, the stability dia-

grams for the six dimensional model corroborate previous

findings obtained for the simpler three dimensional

model,49 but go well beyond them. Considering the rele-

vance of the CO2 laser with optoelectronic feedback in non-

linear dynamics, a detailed investigation taking advantage

from the novel isospike technique39–46 has been proposed.

In isospike diagrams, new dynamical features related to the

organization of stable spiking and bursting behavior emerge

for accessible parameter values. A significant observation

is that qualitatively similar organizations of laser spiking

and bursting can be obtained by tuning rather distinct con-

trol parameters. In other words, not only the stability phases

look similar when recorded in distinct control planes, but

the spikes unfold in a similar way over extended parameter

intervals. This fact strongly suggests the existence of unex-

pected symmetries in the laser control space. It is important

to stress that, in any phase diagram, systematic trends

become clear only when recording the dynamics on a fine

mesh and while varying at least two independent parame-

ters simultaneously, a procedure that is not yet common in

experimental work.

Although the six dimensional model for the CO2 laser

with opto-electronic feedback has been introduced and accu-

rately tested for this kind of molecular laser, it could be con-

sidered in different applications spanning from secure

communications to modelling brain dynamics, when the

intrinsic time-scales associated with fast and slow variables

are carefully adjusted and tailored to a specific problem, that

is, the millisecond range. In fact, in several diagrams, we

observe that the number of spikes in one period increases fol-

lowing a recently reported nonchaos mediated spike adding

mechanism. In such case, we can approach the time scales

typical of neuronal brain phenomena, making the dynamical

features observed here to be also attractive for analogies in

neuroscience.

While the spike unfolding occurring over wide parame-

ter regions where periodic oscillations dominate seems to be

fairly well understood, the classification of the very complex

combinations of chaotic and non-chaotic phases demand

much more investment of computer time and experimenta-

tion. The big open challenge is to classify wave pattern com-

plexification by peak-deformations when several parameters

are tuned simultaneously.
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