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Abstract
We revisit the problemof the structure of a nano-powder subjected to repeated fragmentation and
sedimentation, and extend the analysis to themore relevant three-dimensional (3D) case. One impor-
tant question not addressed previously is how the fractal dimension and dust exponent depend on
space dimension.We find that the qualitative behavior of the nano-powder in three dimensions is
similar to that in two dimensions. But the fractal dimension changes from ±1.6 0.1 in two dimen-
sions to ±2.1 0.1 in three dimensions. The scaling relation between the fractal dimension and the dust
exponent characterizing the fragment size distribution is the same as in two dimensions. The uni-
versality of these exponents is addressed by comparing the results with amuch simpler latticemodel.
Although the different settling kinetics of the fragments leads to different anisotropies, the fractal
properties are not affected.

1. Introduction

Films of nanoparticles are used inmodern gas sensors, solar cells, andmany other nanotechnological
applications [1]. Such films can be created by sedimenting particles or agglomerates of particles onto afilter or a
substrate. Once created, the sedimentmight be subjected to various treatments as it is handled further, which
willmodify its structure. Recently it was discovered in two-dimensional simulations that when a nanopowder is
subjected to repeated fragmentations and sedimentations, its structure will become invariant to further
fragmentations and sedimentations, and it will develop a fractal substructure [2]. It is expected that the scaling
behavior depends on space dimension. In this paper the exponents for a three-dimensional extension of the
model are presented.Moreover, to address the universality of the phenomenon, we compare alsowith amuch
simpler latticemodel.

The analysis of themicrostructural evolution in a powder handling process that involvesmillions of particles
and hundreds of repeated sedimentation and fragmentation cycles is computationally very challenging.
Therefore the development of efficient algorithms constitutes an important part of this paper.

For the sedimentation of spherical particles, Visscher andBolsterli [3, 4] designed a very efficient but still
sufficiently versatilemodel: the particles are dropped one after another onto a horizontal plane, each one
following the trajectory of steepest descent.When a particle reaches a stable position either on three previously
dropped spheres or on the ground, it is considered fixed and cannotmove anymore. This particle dynamics has
been used to study a variety of systems and their phenomena, such as packing properties of sediments [3, 5, 6],
their surface properties [7], segregation by size [8, 9],filtration [10], convective heap formation [11], structure
evolution in rotating drums [12–14], and how the structure in a heap and its angle of repose are related to the
deposition process [15, 16]. In section 2.1we present a non-trivial generalization of theVisscher–Bolsterli
model to agglomerates in three dimensions.

Fragmentation is assumed to happen at a characteristic length scaleℓ. This ismodeled by using a simple
cubicmesh to cut the sediment into boxes of volumeℓ3, which in general contain several disconnected
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fragments.We imagine them to be dispersed, for example in a stirred fluid.When stirring stops, the fragments
sediment under gravity, leading to the formation of a new agglomerate. During this process the fragments as well
as the growing agglomerate are regarded as rigid.Modeling fragmentation bymeans of discrete elements is an
active area of research [17, 18], and interesting phenomena have been found, such as uniqueness of the exponent
of the fragment size distribution in a variety of situations. Two-dimensional packings of such fragments have
been investigated in [18].

2.Model description

In this sectionwe introduce two three-dimensionalmodels, first an off-latticemodel (OLM) in the spirit of the
two-dimensionalmodel proposed in [2, 19], and second a similar latticemodel (LM) [20].

2.1.Off-latticemodel (OLM)
In the off-latticemodel, the fragments are dropped one by onewith randomorientation, and x- and y-
coordinates of the center ofmass are uniformly distributed over the area ×L L[0, ) [0, ). In the x and y directions
periodic boundary conditions are used. The fragmentmust be released at a sufficiently high z-coordinate that it
canmove downward along the negative z-axis until it touches the bottomor a particle that is part of a previously
deposited fragment. Then the freshly dropped fragment follows a trajectory of steepest descent of its center of
mass.Motion of an arbitrarily shaped fragment can be very complex. To simulate it in an event-driven, efficient
way, rolling is replaced by a rigid rotation of the fragment around the center(s) of the fixed sphere(s)
underneath. On its course itmay detach, fall down, and continue to roll until it settles in a position, where
further descent is no longer possible. There it isfixed and cannotmove anymore.

The fragmentation of the nano-powder is simulated by cutting the sediment by a cubicmeshwith box length
ℓ. A particle is considered to belong to a box if its center lies within. The content of each box in general consists of
disjunct fragments that have no contact with one another, each one forming a rigid body. These fragments are
then individually rotated into randomorientations and dropped at randompositions as previously described.
The newly created packing of fragments is then fragmented again, then deposited, and so on. In the initial
sedimentation step spherical particles are dropped.

2.2. Latticemodel (LM)
Here a simple cubic lattice is consideredwith one axis parallel to the z-direction. Particles are represented by
filled cells. Each particle can be in contact with up to six nearest neighbors (in the x-, y-, and z-directions). An
agglomerate is cut into disjoint cubical boxes ofℓ3 cells each, as described for the off-latticemodel. Bymeans of
theHoshen–Kopelman algorithm [21], the connected clusters (fragments) are identified for all boxes.

For the sedimentation step, first one of the six possible lattice rotations is applied randomly to every
fragment. The rotated fragment is then released at a sufficiently large height at randomly chosen lattice
coordinates x and y so that it canmove down vertically until the first contact in the z-direction is formed.Note
that horizontal contacts do not stop the downwardmotion in thismodel (see [22]), in contrast with ballistic
deposition [23].No further settling (whichwould correspond to the steepest descent relaxation in the off-lattice
model) takes place here. Once the fragment has reached itsfinal position, all contacts (including the horizontal
ones) are supposed to become rigid so that in the next fragmentation step one does not have to discriminate
between older and newer contacts.

In the following, we also present data obtainedwith the two-dimensional version of this latticemodel in
order to compare themwith the two-dimensional off-latticemodel [2]. The agglomerates simulatedwith the
latticemodel typically consisted of =N 226 particles. All lengths are given in units of the particle diameter (by
definition identical with the lattice constant). The horizontal system size was in general Lx= 4096 in 2D and

= =L L 512x y in 3D, and periodic boundary conditions were applied in the x- and y-directions.

2.3.Off-latticemodel without relaxation (OLM-)
The latticemodel differs from the off-lattice one in two respects: first, there are only six orientations for a
fragment; and second, the steepest descent relaxation is absent. To assess their relative importance we also
studied the off-latticemodel, where the deposited fragment sticks upon first vertical contact, as in the lattice
model. The orientation of the fragment before deposition is chosen arbitrarily, but any relaxation is suppressed.
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3. Results

In this sectionwe compare the results obtained forfive differentmodels: the 2Doff-latticemodel [2], the 2D
latticemodel (section 2.2), the 3Doff-latticemodel (section 2.1), the 3Doff-latticemodel without relaxation
(section 2.3), and the 3D latticemodel (section 2.2).

Figure 1.Off-latticemodel: evolution of a packing containing =N 106 particles during repeated sedimentation and fragmentation
withℓ = 8. Thewidth of the system is L=128. (a) Initial packing of spherical particles. (b) First iteration: sedimented fragments of the
initial packing. (c) Second iteration: sedimented fragments of packing (b). (d) Third iteration. Between the 50th iteration (e) and the
100th iteration (f) the structure hardly changes anymore.

Figure 2.OLM(3D): evolution of the filling height for different fragmentation lengthsℓ. = ×N 5 106 and L=128.Heights saturate
toℓ-dependent values ℓ∞h ( ). To demonstrate that the steady state is independent of initial conditions, we also considered the case
where all particles are part of a single vertical needle at the beginning.

3
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3.1. Approach of steady state
Figure 1 illustrates the structural evolution of the powder for the off-lattice fragmentation–sedimentation
model. The system contains =N 106 spherical particles with uniformly distributed diameters in the range
[0.9, 1.1]. The system size and the fragmentation length are L=128 andℓ = 8, respectively. The initial sediment,
figure 1(a), is a disordered packingwith packing fraction of about 0.58. After the first fragmentation and
sedimentation, figure 1(b), the structure is dominated by the cube-shaped fragments, which pack into a looser
structure than the initial sediment, due to both existing pores inside the cubic fragments and new,much larger
pores in between the cubic fragments. After the second iteration, figure 1(c), the fragments have a less well
defined shape, and they pack into a looser structure than at the end of thefirst iteration, evident by the somewhat

Figure 3. LM (3D): evolution of thefilling height for differentℓ. The system size is as given at the end of section 2.2.

Figure 4.OLM(3D): saturation heights ℓ∞h ( ) taken fromfigure 2, plotted double-logarithmically versus the fragmentation lengthℓ.
The relaxation time ts, obtained as amean over five independent runs, is shown in the inset. It depends linearly on the fragmentation
lengthℓ.

Figure 5. LM (3D): saturation heights ℓ∞h ( ) taken fromfigure 3, plotted double-logarithmically versus the fragmentation lengthℓ.
Inset: the relaxation time ts depends linearly on the fragmentation lengthℓ.
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Table 1.Exponents for thefivemodels described in the text.

df
h df

c df
m τ df

h(2−τ) df
m(2−τ)

= d − α = d − γ

OLM(2D) (2D off-latticemodel [2]) 1.67 ± 0.03 1.695± 0.005 1.42± 0.05 1.03± 0.08 1.05± 0.08

LM (2D) (2D latticemodel, section 2.2) 1.602 ± 0.005 >1.5 1.549± 0.007 1.377± 0.004 1.00± 0.01 0.97± 0.01

OLM(3D) (3D off-latticemodel, section 2.1) 2.21 ± 0.01 <2.4 2.28 ± 0.03 1.5 ± 0.1 1.12 ± 0.22 1.14± 0.23

OLM- (3D) (3Doff-lattice without relaxation, section 2.3) 2.128 ± 0.001 1.86± 0.04 1.51± 0.03 1.04± 0.06 0.91± 0.06

LM (3D) (3D latticemodel, section 2.2) 2.124 ± 0.007 <2.0 1.96 ± 0.03 1.52± 0.03 1.02± 0.06 0.94± 0.06
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higherfilling height. Another iteration again increases the filling height, figure 1(d). Structures after 50 and 100
iterations have a similar appearance, implying that the structure of the packings has stopped evolving, apart from
statisticalfluctuations. The fragments blend into a single packing, with no distinct fragment shapes or imprints
ofmesh structure used for fragmentation. Such a behaviorwas also observed for the two-dimensionalmodel [2]
and for the othermodels considered in this paper: starting froma randomdense packing, repeated
fragmentation and sedimentation cycles lead to amonotonous decrease of the solid fraction of the aggregate for
allfivemodels. This is reflected by an increasing filling height because the horizontal extent of the systems,
Lx= Ly, and the number of particlesN arefixed.

For two of themodels the height evolution is shown infigures 2 and 3. Thefilling height, determined as twice
the center ofmass height, saturates for long enough times. The asymptotic values are approached exponentially,

ℓ ℓ ℓ= − − ℓ
∞ ∞

−( )h t h h h e( , ) ( ) ( ) , (1)t t
0

( )s

with a relaxation time ℓt ( )s , which grows linearly withℓ in allfivemodels (see insets offigures 4 and 5). In
equation (1), h0 denotes the initial height of the densely packed system, and t the number of cycles.We checked
that also the average fragment size and the number of fragments per box reach steady-state values on the same
time scale.

The saturation heights averaged overmany cycles are plotted double-logarithmically versusℓ infigures 4
and 5. As for the 2Doff-latticemodel [2] and the other twomodels, a power law dependence

ℓ ℓ∝ α
∞h ( ) , (2)

is obtained. For theOLMweobtainedα = ±0.79 0.01, and for the LMα = ±0.876 0.007.
In [2] it was argued that the power law dependence of ℓ∞h ( ) indicates a fractal substructure up to a linear

sizeℓ, beyondwhich the packing becomes homogeneous. Themass density is ρ ℓ ℓ= ∞M L L h( ) ( ( ))x y with

the totalmassM. Themassm per box volume ℓ=v d (where d is the dimension of space) is

ℓ∼m

v
. (3)d f

h

The corresponding fractal dimension α= −d df
h is given in the first columnof table 1.

3.2. Fractality of steady state
To get direct information about the structure of the packing, we evaluated the density correlation function

ρ ρ

ρ
⃗ =

′⃗ + ⃗ ′⃗

′⃗
( )

( ) ( )
( )

C r
r r r

r
. (4)

The expectation values on the right-hand side are averaged over a large number of steady-state configurations,
and over all bulk positions ′⃗r not too close to the bottom and the surface of the aggregate. In this sectionwe
further average over all directions of ⃗r . Themass density of the individual particles is taken as 1.C(r) becomes
equal to the averagemass density for large r. If the density correlation function is a power lawwith exponent γ− ,
then the structure is fractal [24], with fractal dimension γ= −d df

c .
The steady-state density correlation function is shown for the 3Doff-latticemodel infigure 6. In the inset we

have plotted the effective fractal dimension

Figure 6.OLM(3D): density correlation function obtained by consideringNp=300000 randomly chosen particles from the bulk of

the packing. The entire packing contains 5 × 106 particles. Inset: local fractal dimension = + Δ
Δ

d 3 C r

rf
eff ln ( ( ))

ln ( )
.
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Δ
Δ

= +d
C r

r
3

ln ( ( ))

ln ( )
, (5)f

eff

obtained from the local slope. For distances larger than the fragmentation length the structure is effectively no
longer fractal, =d 3f

eff . For small values of r the exponents tend to values between 2.2 and 2.4, which is close to

thefilling height exponent =d 2.21f
h .We do notfind a plateau of the localdf

eff values and therefore can, for the
system sizes andℓ values considered, present only an upper bound fordf

c, which is given in the second column
of table 1.

Similarly, for the 3D latticemodel of L=512 andℓ = 128 one obtains an upper bound of 2.0 fordf
c

(figure 7). In two dimensions the exponent γ can be determinedmore reliably (figure 8). Nonetheless, it still
showsfinite size effects. Taking the trends of the effective exponents into account, we get a lower bound of 1.56
fordf

c. These values are given asdf
c in table 1.

Figure 7. LM (3D): density correlation function for the 3D latticemodel. The dashed line has slope − 1.

Figure 8. LM (2D): density correlation function for a 2D configuration producedwithℓ = 512. The solid line is afit with γ = 0.438.
The vertical dotted line indicates ℓ=r . Inset:ℓ-dependence of γ= −d d .f

c

Figure 9.OLM(3D): normalized distribution of fragmentmasses for various fragmentation lengths. Inset: collapse for τ = 1.5.
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3.3. Fragment size distribution
The fragment size distribution ℓf m( , )describes the probability density that a fragment has amassm for
fragmentation steps in the steady state. The histogram ℓf m( , )of fragmentmassesm, normalized to 1, was
accumulated overmany fragmentation–sedimentation cycles for various fragmentation lengths. Figure 9 shows
the results for the 3DOLM.As in two dimensions the fragmentmass distribution shows a power law part,
composed of ‘dust’ particles by definition, and a peak at the end of the distribution, formed by ‘chunk’ particles
with a typicalmassmc. The curves can bewell described by a scaling function

ℓ ℓ
ℓ

= τ−
⎛
⎝⎜

⎞
⎠⎟f m m f

m

m
( , ) ( ) ˜

( )
, (6)c

c

Figure 10.OLM(3D): the exponent τ is dependent on the fragmentation length. By extrapolating the dependence of τ on ℓ1 when
ℓ → ∞we obtain τ =∞ 1.5.

Figure 11.OLM(3D): the chunkmass depends as a power on the fragmentation lengthwith exponent =d 2.28f
m .

Figure 12. LM(2D):mass distribution of 2D latticemodel for different values ofℓs.

8

New J. Phys. 17 (2015) 013024 NTopic et al



defining the dust exponent τ. It turns out that this exponent, obtained by fitting the power law part of the
fragment distribution, varies with the fragmentation length.

Empirically we found that the available data suggest a linear extrapolation in ℓ1 , which intersects the τ-axis
at ±1.5 0.1; see figure 10. This extrapolated valuewas used to determine the characteristic chunkmass ℓm ( )c as
themaximumof ℓ τ−f m m( , ) . The corresponding data collapse of the fragment size distribution function is
presented as an inset infigure 9.

We found excellent power law dependence of the characteristic chunkmass on the fragmentation length,
figure 11,

ℓ ℓ∝m ( ) . (7)c
d f

m

The exponent has themeaning of a fractal dimension of the chunks, = ±d 2.28 0.03f
m . It is given in the third

columnof table 1.We note that the exponent is close to but somewhat larger than the exponent obtained from
the dependence of the filling height on the fragmentation length,df

h.
We repeated the same analysis of the fragment size distribution function for the latticemodel in 2D

(figure 12) and 3D (figure 13). The dust exponents are

τ
τ

= ±
= ±

D

D

(2 ) 1.377 0.004

(3 ) 1.52 0.03, (8)

The chunks lead to a less pronounced contribution at the end of the distribution than for the off-latticemodel.
Although they are hardly visible for three dimensions, they are still there, as shown by the inset offigure 13. The
fractal exponent of the chunks is

= ±
= ±

d

d

(2D) 1.549 0.007

(3D) 1.96 0.03, (9)
f
m

f
m

which is 10% smaller than the overall fractal dimensiondf
h, in contrast with the off-lattice case.We conclude

that the chunks do not carry the entiremass of one cutout in the limitℓ → ∞. Further investigations show that
not every cutout is populated by a large cluster with characteristicmassmc.With a nonzero probability, even an
emptymesh can be found. In comparisonwith theOLM, themissing bumps at the end ofmass distributions
stress this difference aswell. This ismost certainly caused by the single-contact deposition of clusters. Here one
point of contact is enough, which createsmore—(i.e., structures that aremore porous as opposed to a greater
number of porous structures) porous structures because overhangs are not suppressed.

3.4. Scaling relation
In the two-dimensional off-latticemodel a scaling relation

τ− =d (2 ) 1, (10)f

between the dust exponent and the fractal dimensionwas derived [2]. Let us briefly go through the arguments
here again, this time under the assumption thatdf

h anddf
m are perhaps different. The argument starts with the

observation that the average fragmentmass, i.e., the firstmoment of the distribution function equation (6) is a
power law of the chunkmassmc:

Figure 13. LM(3D):mass distribution of 3D latticemodel for differentℓ. In the inset ℓ τf m m( , ) is plotted so that theweakmaxima
used to determinemc are visible.
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∫ ∫ℓ= = τ
∞

−
∞

m mf m dm m xf x dx¯ ( , ) ˜ ( ) . (11)c
0

2

0

The last integral converges to a constant independent ofmc because f̃ decays faster than any power to zero for
≫x 1.
The next step in the argument is the observation that

ℓ∼m̄ , (12)

as demonstrated byfigures 14 and 15. This is a consequence of the fact that on average in the steady state asmany
particle contacts are broken by the fragmentation step as are regained during the sedimentation step. The

number of broken contacts around a box cut out in the fragmentation step scales asℓ −d 1f
h

. Because each
fragment upon settlement creates between one and three new contacts depending on themodel, the average
numbernf of fragments per boxmust scale the sameway,

ℓ∼ −n , (13)d
f

1f
h

Multiplying this by the average fragmentmass gives the totalmass per box, which according to equation (3)
scales as

ℓ∼m n . (14)d
f f

h

In combinationwith equation (13) this explains the finding in equation (12).
As a third step the scaling of the chunkmass is inserted in equation (11), which in combinationwith

equation (12) gives

ℓ ℓ∼ τ−( ). (15)d 2f
m

This shows that it should bedf
m rather thandf

h that enters the scaling relation in equation (10).

In the last two columns of table 1 it is verified howwell the scaling relation is fulfilledwithdf
m d( )f

h . In

contrast with the preceding argument, the scaling relation seems to be obeyed bydf
h better than bydf

m.We

Figure 14.OLM(3D): the averagemass per fragment depends linearly on fragmentation length.

Figure 15. LM(3D): average fragmentmass as a function ofℓ.
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Figure 16.OLM(2D): sedimentation of needles.

Figure 17. LM(2D): sedimentation of needles.
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conclude that the validity of the scaling relation does not give a conclusive criterion regardless of whether the
fractal dimension of the chunks is different from that of the boxes cut out by a fragmentation step.

3.5. Anisotropy
Since gravitymakes a distinction between the horizontal and the vertical direction, it is of interest tomeasure
whether such a difference exists in the packing.On the one hand, the anisotropy is expected to beweak because it
is exclusively due to the last sedimentation process. Any previous anisotropy gets erased by randomly rotating
the fragments prior to sedimentation. On the other hand, the example of needles shows that the settlement
kineticsmay lead to self-organized orientational order, figure 16. In the latticemodels such an effect is
suppressed because every fragment settles with the randomorientation it was prepared in. Still, the example of
needles in 2D shows that a horizontal needle in contrast with a vertical one shades the deposit underneath so that

Figure 18.OLM(2D): anisotropy for the 2Doff-latticemodel forℓ = 32.

Figure 19.OLM(3D): anisotropy for the 3Doff-latticemodel forℓ = 32.

Figure 20. LM(2D): direction-dependent density correlation function forℓ = 64. The black data describe the horizontal correlation,
whereas the red data describe the vertical correlation. The solid lines are thefits to determine the exponents γ separately for the two
directions. Inset: correlation exponents γ for horizontal directions (the vertical direction) for different fragmentation lengthsℓ.
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it is no longer accessible for later needles, figure 17. From this discussionwe conclude that anisotropywill
develop differently, depending on dimension and settlement kinetics, for the fivemodels considered in this
paper.

Here we analyze only the effect of anisotropy on the density correlation function, equation (4), because of its
connection to the fractal dimension. For this purpose, ⃗r is either in the vertical direction, giving the vertical
correlation function, or in horizontal directions, giving the horizontal correlation function, whichwas averaged
over all horizontal directions. Asymptotically, the density correlation always becomes equal to the density, i.e.,
independent of direction.

Themeasured functions are displayed infigures 18 and 19 for the two-dimensional and three-dimensional
off-latticemodels respectively, averaged in the bulk of the systemwith L=128 and = ×N 5 106. As expected,
the anisotropy is visible in the density correlation function only up to a distance of orderℓ. It ismore
pronounced in the two-dimensional case. In the three-dimensional case, the difference between the functions is
small: the density correlation for the vertical direction decays a little faster than for horizontal directions.

Figures 20 and 21 show the direction-dependent density correlation function for the latticemodel in two and
three dimensions respectively. Here, in contrast with the off-latticemodel, the decay in horizontal directions is
faster, reflecting the differentmicroscopic origin of the anisotropy. The inset offigure 20 shows the exponents γ
for differentℓ. The difference between the horizontal directions and the vertical direction decreases with
increasingℓ, implying that it perhaps even vanishes in the limitℓ → ∞.

A tangible proof that for very largeℓwe are dealingwith an isotropic systemhas yet to come.Hencewe can
conclude that anisotropy causes a systematic error in quantitiesmeasured by varyingℓ.

4. Conclusions

Wehave studied the structure of a 3Dnanopowder subjected to repeated fragmentation and sedimentation, and
compared it with results for a 2Dnanopowder. The fragmentationwas simulated by disassembling the packing
with a cubicmesh, whereas for the sedimentation two differentmodels were developed. In themore realistic one
the complex-shaped fragments were droppedwith orientation and horizontal position chosen randomly,
followed by a steepest-descent relaxation. In the computationallymore efficient latticemodel, on the other
hand, this relaxationwas suppressed: the fragments stuck upon first vertical contact in the orientation theywere
prepared in.

We found that the qualitative behavior in 3D is similar to the 2Dnanopowder:

(i) After a relaxation time linear in the fragmentation lengthℓ, a stationary structure is reached.

(ii) The asymptotic filling height depends as a power law on the fragmentation length, indicating a fractal

substructure with a fractal dimensiondf
h.

(iii) The density correlation analysis confirmed that the effective fractal dimension is smaller than 3 for distances
shorter than the fragmentation length, and equal to 3 for larger distances.

(iv) The fragment size distribution is composed of a power law part (dust) and a bump at the end of the
distribution (chunks).

Figure 21. LM(3D): direction-dependent density correlation function forℓ = 16. Inset: correlation exponents γ for horizontal
directions (the vertical direction) for different fragmentation lengthsℓ.
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(v) The fragment size distribution can be described by a scaling function with two exponents, the dust exponent
τ and the fractal dimension of the chunksdf

m.

The exponents are summarized in table 1. A few interesting observations can bemade: first, the 3D lattice
model and the 3Doff-latticemodel without relaxation give very consistent exponents. This shows that the
discretization of the fragment rotation in the latticemodel is not relevant to the scaling behavior. Second, for the
latticemodels in 2D and in 3D the fractal dimension of the chunks,df

m, seems to be smaller by about 10% than
for the corresponding off-latticemodels with relaxation. A possible explanation for this is that relaxationmakes
the sediment denser, hence leading to a larger effective dimension. The question of whether this difference
survives in the scaling limitℓ → ∞ is very difficult to answer, though. A hint can be obtained by comparingdf

m

withdf
h for the latticemodels, the former being 3% (2D) and 8% (3D) smaller. Therefore, the scaling relation

τ− =d (2 ) 1f , which, according to its theoretical derivation, shouldhold for =d df f
m, shouldbe violated fordf

h.
However, the opposite is true (see the last two columns in table 1). This can be taken as an indication that the
fractal dimensionswill actually be the same in the scaling limit.

In conclusion, we found that the fractal dimension for a 3Dnanopowder subjected to repeated
fragmentation and sedimentation is ±2.1 0.1 (comparedwith ±1.6 0.1 for 2D). The dust exponent τ obeys the
scaling relation τ− =d (2 ) 1f .We showed that these exponents are not changed by relaxation, nor by the
differentmechanisms creating anisotropies in themodels.

We suggest two directions for further research. Themodel has several simplifications, in particular
concerning the fragmentation process, and thereforemore realistic simulations are of interest. Finally,
experimental realizations are needed to validate the results.
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