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Abstract We consider the attenuation of the oscillation of
a flat spring due to the action of a granular damper. The effi-
ciency of the damper is quantified by evaluating the position
of the oscillator as a function of time using a Hall effect
based position sensor. Performing experiments for a large
abundance of parameters under conditions of microgravity,
we confirm a recent theory for granular damping (Kollmer
et al. in New J Phys 15:093023, 2013) and show that the the-
ory remains approximately valid even beyond the limits of
its derivation.

Keywords Granular systems · Vibration damping ·
Dissipation

1 Introduction

One of the main characteristics of granular matter as com-
pared to other many-particle systems like gases or fluids is the
dissipative nature of particle interaction. When confined in
a container and subjected to vibration, the particles undergo
violent collisions such that part of the mechanical energy of
the vibration is transformed into heat—this is the basic mech-
anism of granular damping. Obviously, the intensity and fre-
quency of particle collisions depend on the level of fluidiza-
tion and, thus, on the parameters of the vibration, ampli-
tude, A, and frequency, ω. Fluidization in turn is strongly
affected by gravity which is obvious for vertical vibration
since particles cannot separate from one another as long as
the amplitude of the acceleration is significantly below grav-
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ity, Aω2/g � 1 (for more accurate arguments see [2,3]).
Similarly, also for horizontal agitation, fluidization depends
sensitively on the parameters of vibration and on gravity such
that several regimes of fluidization can be identified [4].

The dependence on gravity is a rather general property of
agitated granular matter. To study these phenomena, there-
fore, granular systems have been investigated under con-
ditions of weightlessness, e.g., in drop towers, during par-
abolic flights, using sounding rockets and aboard the Interna-
tional Space Station. Examples for such investigations con-
cern shear flow [5,6], cooling and clustering in dilute sys-
tems of spheres [7–9] and rods [10], violations of the energy
equipartition in 2D [11,12] and 3D [13], the propagation of
sound [14], segregation [15], the structure of packings [16]
and others.

Granular dampers as considered in this paper are con-
tainers partly filled by granular material. When attached to
a mechanically oscillating site, the dissipation of the agi-
tated granulate transforms mechanical energy into heat and,
therefore, leads to an attenuation of the vibration. Granular
dampers reveal a number of advantageous properties which
make them interesting for certain practical applications: In
contrast to other dampers, granular dampers show only a
weak dependence on temperature. Their setup is very sim-
ple such that they hardly need any maintenance in long term
applications. They can be sealed off hermetically which is of
advantage for use in harsh environments with extreme tem-
perature and high pressure. Moreover, unlike other dampers,
granular dampers do not rely on a fixed anchor as an impulse
reservoir. Examples of application include dampening of tur-
bine blade oscillations [15,17], attenuation of vibrating break
drums [18] as well as vibration damping of medical tools
where sterilization is mandatory [19], vibration dampening of
mechanical tools and machinery [20], metal cutting machines
[21], sports equipment [22,23], vibrating antennae [24,25]
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and bonding machines [26]. Granular dampers had also been
proposed to reduce vibrations of the space shuttle engine
[27,28].

Recently, a model for the operation of granular dampers
was derived, based on experiments under conditions of
weightlessness in order to isolate the damping effect from
the spurious influence of gravity [29]. This model quanti-
fies the energy dissipation of an externally driven granular
system at fixed amplitude and frequency as a function of
these parameters and further system characteristics. Later,
this model description was extended to predict the attenua-
tion of a vibrating spring with an attached granular damper
[1,30]. The set of experimental data leading to this model
was rather small due to the request for weightlessness requir-
ing parabolic flights and the limited time of a parabolic
flight campaign. Consequently, there is a need for further
examination and confirmation of the models introduced in
[1,29,30]. The objective of the present paper is, therefore,
to examine these models by means of a wide abundance of
experimental data for dampers of various physical dimen-
sions, oscillation frequency, amplitude, type and amount of
granulate.

2 Efficiency of granular dampers

2.1 Basic mechanism

In order to use granular dampers in practical applications,
we need to quantitatively understand their physics which
would allow to predict the damping properties of a certain
damper under specified conditions. Unlike many other tech-
nical systems, for granular dampers by now there are no reli-
able design rules to tailor a dampening device for a specified
application.

A large number of experimental studies on granular damp-
ing has been performed and it was found that the efficiency of
granular dampers depends on the parameters of the vibration,
amplitude and frequency, but also on the characteristics of the
granular material such as stiffness and dissipative properties
(material viscosity), number, sizes and material density of
the granular particles [31,32] as well as system parameters
such as container geometry and material filling rate [33–41].
Until very recently (see [1,29,30,42]), all investigations were
performed under conditions of gravity resulting in different
response of granular dampers to weak and strong forcing
[36,43], that is, a dependence on gravity itself.

By now, the specific dependence of the efficiency of gran-
ular dampers on all these parameters is not well understood
with the only exception of the dependence on amplitude and
frequency of a damper operating under conditions of micro-
gravity discussed next.

2.2 Modes of operation of granular dampers in microgravity

When a container partly filled with granular material is sub-
jected to sinusoidal vibration in weightlessness

A(t) = A sin(ωt), (1)

two very distinct modes of operation are observed (for a
detailed discussion see [29,30,42] and also the video abstract
of [1]). Both states are also found in numerical simulations
[44] as extremal states of granular dynamics. In the gas-like
state the particles fill essentially the entire volume with small
gradient of density, except for a region close to the moving
walls which swipe once per period a certain part of the vol-
ume due to the amplitude of the vibration. Only a small frac-
tion of the gas particles located in this region interacts with
the walls and, thus, keeps the dissipative gas in motion. The
other dynamical state of granular matter in a vibrated con-
tainer in microgravity was termed collect-and-collide regime
[42]. This state is characterized by a coherent motion of the
particles in synchrony with the periodic motion of the con-
tainer. Here, during the inward stroke, the granulate is col-
lected at the incoming container wall and forms a densely
packed layer by dissipating all energy of the relative velocity
of the particles. Later in the periodic motion, when the con-
tainer eventually decelerates, the bulk of particles detaches
from the wall, travels through the clearance in the container
with constant velocity and impacts the opposing wall shortly
thereafter. At this moment, the opposing wall is accelerating
inwards, that is, towards the bulk of particles, collecting a
majority of the particles and again forming a densely packed
layer.

Which of these dynamical states the granular material
assumes depends largely on the amplitude, (but not fre-
quency, see [29]) of the external agitation: For A > Aopt,
the granular particles perform sloshing motion synchronous
with the vibration following the dynamics described above.
Here Aopt ≡ Lg

/
π where the clearance Lg is the width

of the empty region in the container when the granulate is
located at one side of the container, in densely packed state
(random close packing), see Fig. 1.

For a small amplitude, A < Aopt, the velocity of the bulk
of particles in the moment of detachment, Aω, is too small
to allow for a coherent motion. Instead, the bulk impacts the
opposite wall at an instant when it accelerates away from the
bulk. This leads inevitably to decorrelation, since the parti-
cles can no longer be collected onto the wall. Consequently,
for low driving amplitudes, A < Aopt, the gas-like state is
observed, and the particles occupy the entire available vol-
ume, see [29].

It was shown recently [29] that the loss of mechanical
energy due to dissipative particle collisions is fundamentally
different in both regimes. In the gas-like state, the particle
velocities obey the velocity distribution function of a gran-
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Fig. 1 Granular dampers made of transparent polycarbonate. The
cylindrical body of length L is sealed by plane end caps. The picture
also shows the clearance, Lg . A small polycarbonate block attached to
the damper serves as an anchor to attach the damper to the spring, see
also Fig. 3

ular gas where the thermal velocity [45] is determined by
the velocity of the driving wall. In each period only a small
fraction of particles collides with the driving wall according
to the volume swiped by the wall. Thus, the collisions of
the particles with the driving walls are just sufficient to bal-
ance the energy loss according to dissipative particle-particle
collisions in the bulk. In contrast, in the collect-and-collide
regime twice per period all particles suffer coherently violent
collisions with the incoming wall. Depending on the phase
of the oscillation at the instant of the impact, the relative
velocity between the particles and the incoming wall is in
the interval (0, 2Aω). Consequently, the energy dissipation
rate of a damper operating in the collect-and-collide regime
can exceed by far the dissipation rate in the gaseous regime.

2.3 One-particle model for granular dampers
in the collect-and-collide regime

The sloshing motion of the granulate together with the
assumption that in each collision with the wall the granulate
looses its entire energy of relative motion to the wall suggest
the description of the system by a one-particle model which
was worked out theoretically [42] and experimentally [29].
This model describes the granulate as a single quasi-particle
cycling between the walls of the container in the direction
of the oscillation. When colliding with the wall, the quasi-
particle loses all its relative velocity with respect to the wall,
that is, the collision is characterized by a vanishing coeffi-
cient of restitution. For the justification of this assumption
see [39,42,46].

With this assumption, the dissipated energy per half-
period (one stroke) of the quasi-particle of mass m and veloc-
ity v is

Ediss = 1

2
m (v − vwall)

2 , (2)

where vwall is the velocity of the wall at the time of the impact.
For external driving at constant amplitude, Eq. (1), the quasi-
particle becomes airborne during the inward stroke at time
t = 0 when the acceleration of the container vanishes and
vwall = Aω. This velocity is preserved until the subsequent
impact with the opposite wall. Since the maximum absolute
velocity of the wall is vmax

wall = Aω, the maximum possible
relative velocity is 2Aω. Consequently, we obtain the upper
limit for the energy dissipation per half-period

Emax
diss = 2m A2ω2. (3)

After losing contact with the wall at t = 0, the time of
the collision of the quasi-particle with the opposite wall, tc,
is given by the condition

vmax
wall tc = Aωtc = A sin(ωtc) + Lg, (4)

where the clearance, Lg , characterizes the available length
to travel. Therefore, the phase of the impact is the solution
of

ωtc = sin(ωtc) + Lg

A
. (5)

From Eq. (2) we obtain the dissipated energy

Ediss = 1

2
m [Aω − Aω cos(ωtc)]

2

= 1

4
Emax

diss [1 − cos(ωtc)]
2 . (6)

The efficiency of a granular damper may then be charac-
terized by

η ≡ Ediss

Emax
diss

= 1

4
[1 − cos(ωtc)]

2 , (7)

with ωtc given by Eq. (5). Remarkably, the efficiency, η,
is independent of frequency [29], but depends only on the
amplitude of the vibration and on the clearance. From the
condition ωtc ≤ π which assures that the system operates
in the collect-and-collide regime, together with Eq. (4) we
obtain the maximal clearance that allows for collect-and-
collide,

Lmax
g = π A, (8)

which may be understood as an upper limit for the container
size for given amplitude. For larger containers, the system
leaves the collect-and-collide regime and enters the gaseous
regime where the damping efficiency is much smaller. Alter-
natively, for given Lg , Eq. (8) provides a criterion for the
minimal amplitude which allows the system to operate in
the collect-and-collide regime. Interestingly, the efficiency,
η, adopts its maximum exactly in this limit, Aopt = Lg

/
π .

For a more detailed description, including the damping effi-
ciency in the gas-like regime, see [29].

To check this prediction, the theoretical result, Eq. (7), was
compared to measurements, where the dissipated energy per
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oscillation period, Ediss, was determined by integrating the
driving force over time,

Ediss =
t+ 2π

ω∫

t

dx

dt
F(t) dt, (9)

where the velocity dx/dt is given by the phase of the oscil-
lation and the driving force, F(t), was measured under con-
ditions of microgravity [29].

3 Experimental setup and method

3.1 Method

In an alternative approach to Eq. (9), the dissipated energy
Ediss,i can be determined from the attenuation of a spring
which drives a granular damper:

Ediss,i = k

2

(
A2

i − A2
i+1

)
. (10)

Ai and Ai+1 are successive amplitudes of deflection,
where the kinetic energy ceases such that the total energy of
the system is stored in the spring. This procedure is derived
from an earlier experiment discussed in [1,29]. Using this
method, the dissipation is measured once per impact, i , which
explains the subscript of Ediss,i . Here we consider the motion
of the damped spring as a series of steady states of decreas-
ing amplitude. This is justified as the dynamical state of the
granulate does not reveal hysteresis nor long-lasting tran-
sients when changing the amplitude, see [1].

To calculate the upper limit for the energy dissipation
Emax

diss,i at oscillation amplitude, Ai , we have to modify Eq.
(3) [1]:

Emax
diss,i = 2mred A2

i ω
2. (11)

In the non steady-driven case, where the granular damper
is attached to a spring, the mass in Eq. (3) becomes the
reduced mass, mred = m M

m+M , where M is the mass of the
container (see Sect. 3.3) and m is the mass of the granulate
filling.

The finite mass of the container also causes a shift in the
amplitude Aopt where damping is most efficient [1]:

Aopt = Lg

π

√
m + M

M
. (12)

3.2 General design requirements

To isolate the damping behavior of the granulate from the
disturbing effects of gravity, the experiment was performed
under conditions of microgravity aboard an aircraft in a par-
abolic flight campaign. Besides safety requirements, it is the

tight schedule during a parabolic flight which poses several
special demands to the experiment:

– An individual measurement may not last longer than the
22 s of weightlessness that are obtained on each parabola.

– To gather as much data as possible, several individual
damper experiments should be performed in parallel.
The corresponding data from these oscillators must be
recorded simultaneously.

– Mechanical coupling between individual oscillators shall
be negligible.

– Parabolas were performed in groups of five with one-
minute breaks in between. There were five-minute breaks
between the groups. During the one-minute breaks the
oscillators were loaded, such performing five independent
measurements of the same system. During the five-minute
breaks, all 16 dampers (or oscillators, respectively) were
replaced by others characterized by different mechanical
properties.

A typical parabolic flight campaign consists of a total of
90 parabolas in 3 flights, such that the total abundance of
data can comprise up to 3 × 6 × 16 = 288 sets of para-
meters, assuming each measurement is performed five times
independently (e.g. the samples are exchanged in the 5 min
break). The design of our experiment in agreement with these
requirements shall be described in Sects. 3.3–3.6.

This setup complements an earlier experimental setup [1,
42] where only few large samples could be studied in great
detail.

3.3 Damping device

The damping device investigated here is a cylinder made
of transparent polycarbonate tubing (inner diameter 26 mm,
wall thickness 2 mm) which is partly filled with granulate.
For this work, three different container types of lengths L =
(20, 40, 80) mm and mass M = (49, 57, 73) g respectively
are used. After filling the containers by granulate of specified
mass and type, they were hermetically sealed by welding on
two plane end caps also made from transparent polycarbonate
of thickness 3 mm. Figure 1 shows three examples.

3.4 Oscillator setup

Each single oscillator (see Fig. 2) consists of a flat spring
(length 345 mm, width 30 mm, spring constant k given by the
thickness of the blade, referenced in Table 1) with a granular
damper attached to the top end. The other end of the spring
is clamped down to a heavy bottom plate directly attached
to the aircraft to reduce cross-coupling of the simultaneously
operating oscillators.
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Fig. 2 Sketch of the oscillator; front and side view (not to scale)

Before the start of the experiment, an electromagnet held
the deflected spring approximately 50 mm from its position
of rest. In the experiment, a second after the onset of weight-
lessness, the tensioned spring was released by the retaining
electromagnet. The attenuated oscillatory motion, A(t), of
the spring was then recorded by means of an autonomous
data logger sketched in Fig. 2 (see Sect. 3.5).

Particular care was taken to the mechanisms to replace the
oscillators in the breaks between the parabolas. There are two
options: The damper can be pulled off its holder, see Fig. 3a,
and swapped for a different one while leaving the spring in
place. Alternatively, the entire oscillator including spring,
damper and magnetic stripe can be replaced by loosening
the clamp, see Fig. 3b.

Fig. 3 During the flight, the oscillator could be modified by a replacing
the damper or by b replacing the entire oscillator including spring,
damper and magnetic stripe

The magnetic stripe attached to the movable end of the
spring is used to measure the time dependent elongation of
the oscillation, see Sect. 3.5. The corresponding elongation
measurement unit is fixed to the rigid rack of the experimental
setup.

3.5 Elongation measurement unit

The time dependent elongation, A(t), of the oscillator was
determined by means of an Elongation Measurement Unit
(EMU) consisting of a magnetic strip of alternating magneti-
zation, a corresponding Hall effect sensor and a data logger.

Table 1 System parameters of
the experiment including
particle diameter, d, damper
length, L , filling mass, m,
clearance, Lg , and spring
constant, k

No. d (mm) L (mm) m (g) Lg (mm) k (N/m)

1 3 20 10 8 4.7, 19.3, 37.6, 127.0

2 3 40 15 10 8.1, 19.3, 37.6, 127.0

3 3 80 30 21 4.7, 8.1, 19.3, 37.6, 127.0

4 4 20 5 13 19.3, 37.6, 127.0

5 4 20 10 6 4.7, 19.3, 37.6, 127.0

6 4 40 25 9 4.7, 8.1, 19.3, 37.6, 127.0

7 10 20 5 10 19.3, 37.6, 127.0

8 10 40 11 22 8.1, 19.3, 37.6, 127.0

9 10 80 5 70 4.7, 8.1, 19.3, 37.6, 127.0

10 – 20 5 – 8.1, 19.3, 37.6, 127.0

11 – 40 5 – 8.1, 37.6, 127.0

12 – 80 10 – 2.4, 8.1, 19.3, 37.6, 127.0

13 – 20 10 – 19.3, 127.0

14 – 40 15 – 19.3, 37.6

15 – 80 30 – 19.3, 127.0

16 – 40 25 – 2.4, 127.0

17 – 80 50 – 4.7, 127.0
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Fig. 4 Sketch of the EMU consisting of a magnetic stripe of alternating
magnetization and a corresponding sensor which comprises an array of
multiple Hall effect sensors. The actual elongation is determined from
the shift of the stripe with respect to the sensor

Fig. 5 Two oscillators each with attached granular damper and EMU

The magnetic stripe attached to the top of the spring is
magnetized in such a way, that the magnetic field in its vicin-
ity shows a sinusoidal modulation with a spacial period of
5.12 mm. This undulated magnetic field is sampled by an
incremental position sensor (iC-Haus IC-ML) [47] (see also
Fig. 4) and converted into an electrical signal. The sensor
outputs a pulse for every 20µm of shift. The incremental
data is recorded by a data logger at a sample rate of 10 kHz.
From the time dependent sequence of pulses, the elongation,
A(t), was computed. Each of the oscillators was equipped
with its private EMU. Data recording started for a period of
30 s as soon as the retaining magnet was switched off, that
is, the EMUs operated autonomously and gathered the data
for all parabolas.

Figure 5 shows two of the oscillators with attached
dampers and their corresponding EMUs.

3 2

1

5

4

Fig. 6 Setup of the experiment. Top: Sketch of the fully assembled
experimental rack: 1 two banks of eight oscillators and corresponding
electromagnets, 2 storage for additional samples, 3 four cameras for
documentation. The experiment is enclosed by an aluminium frame 4
holding polycarbonate panels (not shown) to contain accidental spills
and is mounted onto a base plate 5. The bottom picture shows a photo
of the experimental rack

As the EMU records incremental data only, the absolute
position, A(t), is determined à posteriori by centering the
motion of the oscillator around its resting position such that
A(t → ∞) = 0.

3.6 System setup

In order to exploit the valuable time during the parabolic
flights efficiently, the setup was designed to perform 16
independent experiments simultaneously. Figure 6 shows the
setup.
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Fig. 7 Attenuation of the oscillation of the spring with attached gran-
ular damper (a) and reference system where the damper was replaced
by a solid body of the same mass and shape (b). The system parameters
are given in Table 1, with k = 37.6 N/m and for a) containing 15 g of
glass beads with a diameter of 3 mm (No. 2) and b 15 g of fixed solid
(No. 14)

On top of the 16 oscillators, the setup consists of a stor-
age box containing the dampers and oscillators used during
the flight and four cameras to take a picture prior to each
parabola for documentation in order to verify the assignment
of the spring-oscillator system and the recorded data for the
subsequent data analysis.

4 Results

We determined the time dependent elongation, A(t), for a
large set of systems characterized in Table 1. The sets No.
1-9 refer to oscillators attenuated by granular dampers. For
sets No. 10–17 the damper was replaced by a solid body
of same geometric shape and specified mass for reference.
Specifically the damper cases were filled by the specified
amount of hard plaster.

Figure 7 shows a sample measurement of one specific
oscillator under granular damping together with its reference
oscillator. The figure shows the time dependent elongation,
A(t), of the attenuated oscillation. In case of the reference
system, Fig. 7b, the oscillation is damped due to the internal
friction of the spring, aerodynamic drag and energy trans-
ferred to the rack via the clamp. The oscillation of the gran-
ular system, Fig. 7a, is attenuated due to the same influences
and additionally due to the granular damper.

In order to compare the granular dampers with our model,
Eqs. (10) and (11), we analyzed the time dependent elon-
gations, A(t), for the systems specified in Table 1. First we
determined the points of reversal of the oscillator when the
kinetic energy ceases and the elongation assumes extremal
deflection, Ai . At these instants, the total energy, Ei , of the
oscillator is stored in the deflected spring of elastic constant k:

Ei = 1

2
k A2

i . (13)

Table 2 Measured frequencies, ω, of the oscillator equipped with solid
bodies as reference samples

L (mm) m (g) k (N/m) ω (s−1)

20 5 19.3 18.3

20 5 37.6 25.1

20 5 127.0 43.0

20 10 19.3 17.2

20 10 127.0 41.5

40 15 19.3 16.5

40 15 37.6 22.7

40 25 127.0 36.5

80 30 19.3 13.8

80 30 127.0 34.2

Consequently, the loss of energy, Ediss,i ≡ Ei − Ei+1, due
to the i th impact, is obtained from the corresponding pair of
consecutive extrema {Ai , Ai+1} of the oscillation.

We define the efficiency of the damper as the fraction of
experimentally determined dissipated energy Eq. (10) to the
upper limit for the energy dissipation resulting from Eq. (11).

The latter quantity in turn is a function of momentary
amplitude and frequency which need not to be invariant dur-
ing the spring’s relaxation. Looking to the experimental data,
from the times of zero-crossings of the spring, we deter-
mined the angular frequency, ω, of the damped oscillation.
For all system sets investigated, it was found that during the
full relaxation of the oscillator the frequency changes by less
than 5 %. That is, the frequency needed in Eq. (11) is approx-
imated as a constant in time but depends only on the system
parameters specified in Table 1. Furthermore, we found that
the frequencies of the damped oscillators were within 5 % of
the corresponding reference systems. The measured values
of ω for the reference systems are given in Table 2.

The second parameter entering the upper limit for the
energy dissipation is the amplitude of the oscillation which
decreases in time. Therefore, in order to compute η we relate
the energy dissipated in a specific impact i to the upper
limit for the energy dissipation per impact, Emax

diss, i in the
same period, associated to the extremal deflection, Ai , in
this period:

ηi = Ediss,i

Emax
diss,i

. (14)

This way, for each impact we obtain a value ηi belonging
to a certain system setup at a certain amplitude Ai .

In order to compare the damping efficiency for differ-
ent fillings and damper lengths, in Fig. 8 we show the
values of ηi as a function of amplitude where the ampli-
tude was normalized by the amplitude Aopt where the tran-
sition from the collect-and-collide to the gaseous regime
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Fig. 8 Damper efficiency as a function of normalized amplitude due
to Eq. (14) for the setups No. 1–9 specified in Table 1. The colors code
for the spring constant, see legend. The measurement of each setup was

performed five times independently. The solid black line is the theo-
retical result of Eq. (7) discussed in Sect. 2.3, and is identical for all
setups

is expected, see Eq. (12). Each subgraph of Fig. 8 shows
the damping efficiency obtained during multiple runs of
one damper mounted on different flat springs, ranging from
k = (4.7, . . . , 127.0) N/m (different colors). The solid black
line is the numerical solution of Eq. (7) with ωtc given by
Eq. (5). Due to the normalization of the amplitude and the
damping efficiency, this curve is identical for all dampers.

From the results presented in Fig. 8 we see that the data
obtained from a certain damper are very consistent regard-
less of the spring type and, thus, regardless of the oscillation
frequency. Even when increasing the frequency by the fac-
tor 5, only for sample No. 4 we see a noticeable change in
the damping behavior. The absence of an internal time scale
in the collect-and-collide regime was predicted by the theory
presented in Sect. 2.2. Therefore, the obtained results support
this model [29,42].

Obviously, due to dissipation, in the course of time the
oscillator sweeps through different amplitudes. From the the-
ory for collect-and-collide regime we expect the most effi-

cient damping at Ai = Aopt, that is, at normalized amplitude
Ai

/
Aopt = 1. In agreement with this prediction, all sam-

ples operating with particles of diameter 3 and 4 mm show a
maximum of the damping efficiency close to unity normal-
ized amplitude. Remarkably, this is true regardless of the type
of material, diameter of the spheres, size of the container, and
spring constant.

In some of the measurements, the efficiency peaks only at
about η ≈ 0.7 − 0.8. This might be because the dispersion
of the bulk of particles during the time it streams through the
container leads to particles which arrive earlier than the bulk.
Those particles do not collide in the optimal phase (i.e. max-
imal relative velocity) with the wall, diminishing efficiency.
For a detailed discussion see [48].

Each color of each subgraph in Fig. 8 comprises data
from 5 individual repetitions of the same setup with the
same parameters. Obviously, except for samples Nos. 7 and
9, the experiment is well reproducible, indicated by small
scatter. The significant scatter in samples Nos. 7 and 9 can
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be understood from the small number of particles used for
these measurements, as low as 4 particles (5 g filling mass,
10 mm bead diameter). For such a small granular system one
cannot expect that in each stroke the entire energy of the
relative motion of the particles and the container ceases due
to an inelastic collapse scenario, giving rise to the collect-
and-collide mode. This leads to a low efficiency during that
particular impact. Consequently in the following cycle, the
starting velocities can be higher than the maximal velocity of
the container and the energy dissipated in that event may be
higher than expected from Eq. (3). This leads to the signifi-
cant scatter which can be observed in the plots and to single
events of η > 1.

In this respect it might surprise that the model still approx-
imately works in this case, except for the scatter. Moreover,
in samples Nos. 7–9, the filling mass is small compared to
the mass of the container. Therefore, the system is rather sen-
sitive to vibrations transmitted from the aircraft resulting in
relative errors in η of the same size as the g-jitter contributes
to system acceleration.

5 Conclusion

Experiments of granular damping in microgravity were con-
ducted for a wide range of material and system parameters
like frequency and amplitude of the oscillation, container
size, number of particles, total mass of the granulate and
material characteristics of the particles. In order to meet
the special requirements of a parabolic flight environment,
a setup was constructed that allowed to perform 16 indi-
vidual experiments synchronously. To optimally utilize the
limited time on the flight, a feature of the experiment is that
the parameters can be adjusted rapidly, e.g. in the breaks
between the parabolas, by exchanging individual dampers or
the entire spring-damper systems. A data aquisition system
was developed that would automatically record the elonga-
tion time series of each spring-damper unit based on a hall-
effect-sensor. For each set of paramters the experiment was
repeated 5 times leading to only small scatter of the data, in
most cases.

We confirmed that the damping efficiency is independent
of the frequency but depends only on the amplitude of the
vibration and the clearance in the container. Further we find
quantitative agreement with the model prediction [1,29] for
all sets of parameters validating the models remarkably sim-
ple assumptions. This agreement includes cases where the
applicability of the model may be questioned because of a
very small number of particles. Altough showing a significant
scatter, on average the model still seems to hold true.

In conclusion, based on the large set of data presented
in this paper, we confirm the validity of the single particle
model in describing the physics of granular dampers.
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