

TECHNISCHE FAKULTÄT

INSTITUTE FOR MULTISCALE SIMULATION OF PARTICULATE SYSTEMS

Sedimentation and Collapse of a granular gas under gravity Lídia Almazán¹, Dan Serero¹, Thorsten Pöschel¹ & Clara Salueña²

¹ Institute for Multiscale Simulation, Engineering of Advanced Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg ² Departament d'Enginyeria Mecànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain

Goal and Motivation

The sedimentation and collapse of a granular gas under gravity represents a simple and experimentally feasible example of inelastic collapse under external forcing. Despite its apparent simplicity, such a system exhibits a rich temporal behavior, and its cooling properties have recently been the object of contradictory reports [1,2,3]. We present a hydrodynamic study of the gravity driven collapse of a granular gas initially heated from below, when the energy supply is switched off.

Shock waves

The hydrodynamic simulation starts with the initial condition corresponding to a system heated from below by a thermal wall at fixed temperature [5]. During the evolution, successive shocks are seen to develop and propagate, accompanied with steep temperature and density fronts. Simulations performed for various initial bottom plate temperature T_0 and different coefficients of restitution α yields similar behaviors. For $\alpha < 0.95$ only one shock is observed.

Successive snapshots of the temperature field during the sedimentation of a granular column under gravity after the initial bottom heating is switched off.

Model description

We consider a granular fluid composed of smooth inelastic hard disks whose collisions are characterized by a fixed coefficient of restitution. We solve numerically the hydrodynamic equations for a 2D gas using the Jenkins-Richman transport coefficients [6]:

$$\frac{\partial n}{\partial t} + \vec{\nabla} \cdot (n \vec{u}) = 0,$$
$$n \left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \vec{\nabla} \vec{u} \right) = -\vec{\nabla} \cdot \hat{P} - n \vec{g}$$

Evolution of the temperature and density fields for $\alpha = 0.98$. Heights are measured in units of particle diameters.

$$n\left(\frac{\partial T}{\partial t} + \vec{u} \cdot \vec{\nabla} T\right) = -\nabla \cdot \vec{q} - \hat{P} : \vec{\nabla} \vec{u} - \xi n T$$

The Navier-Stokes terms are treated by centered high-order explicit in time finite difference approximations and considered as sources for the method of lines in the time approximation. The Euler terms are solved in local coordinates by a fifth-order explicit in time finite difference characteristic-wise WENO method [4].

Late stage of cooling and collapse

Close to collapse, when all the material is densely packed on the bottom and almost at rest, the system exhibit a scaling behavior where the (kinetic) energy decays according to a power law:

 $E \sim (t_c - t)^{\beta}$

but contradictory results were reported concerning the value of β [1,2,3]. In order to estimate β , the late stages of the energy (or temperature) decay were fitted with the above power law, with parameters β and t_c .

Considering the temperature of various layers of the material, characterized by different Lagrangian (mass) coordinates, very similar values for t_c are obtained. This confirms the existence of a well defined collapse time, and imply:

The separation between subsonic and supersonic regions (Mach=1), represented by red circles, coincide with the temperature and density fronts, characterized by the maximum value of their gradients.

Conclusions

- The sedimentation process presents a rich behavior, comprising several stages of diffusive (subsonic) and inertial (supersonic) dynamics.
- Shock waves develop and propagate, followed by expansion of the material and sharp increase of temperature.
- The front separating between subsonic and supersonic regimes follows the sharp profiles of temperature and density fields.

 $T(m,t) = Q(m)(t_c - t)^{\beta(m)}$

in accordance with previous numerical (MD) [3] and experimental [1] findings.

Considering the overall kinetic energy, it is found that β depends on the values of the coefficient of restitution α . E.g, for $\alpha = 0.96$, $3.5 < \beta < 5.2$. values are consistent with The experimental findings [1], as well as with results of force based MD simulations [2] (e.g. $3.8 < \beta < 4.2$ for $\alpha = 0.96$), but contradicts the claim in [3] that $\beta = 2$.

- Close to collapse, the energy decays according to a power law, with a well defined collapse time.
- The power laws describing the energy decay are found to match the experimental values, as well as the predictions of force-based Molecular Dynamics simulations, and contradict the claim of a universal value for β made in early analytical studies.

References

[1] R. Son, J. Perez, and G. Voth, Experimental measurements of the collapse of a two-dimensional granular gas under gravity. Phys Rev E 78:1-7(2008).

[2] S. B. Kashuk and G. A. Voth, Simulation of granular gravitational collapse, Phys Rev E 88:062202 (2013). [3] D. Volfson, B. Meerson and L. S. Tsimring, Thermal collapse of a granular gas under gravity, Phys. Rev. E 73:061305 (2006).

[4] J. A. Carrillo, T. Pöschel, and C. Salueña. Granular hydrodynamics and pattern formation in vertically oscillated granular disk layers. J. Fluid Mech., 597:119, (2008).

[5] B. Meerson, T. Pöschel, and Y. Bromberg, Close-packed floating clusters: Granular hydrodynamics beyond the freezing point?, Phys. Rev. Lett., 91:024301 (2003).

[6] J.T. Jenkins and M. W. Richman, Kinetic theory for plane flows of a dense gas of identical, rough, inelastic circular disks, Phys. Fluids 28 :3485-3494 (1985)