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Complex Velocity Dependence of the Coefficient of Restitution of a Bouncing Ball
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We investigate the coefficient of normal restitution as a function of the impact velocity, (v), for
inelastic spheres. We observe oscillating behavior of £(v) which is superimposed to the known decay of
the coefficient of restitution as a function of impact velocity. This remarkable effect was so far unnoticed
because under normal circumstances it is screened by statistical scatter. We detected its clear signature by
recording large amounts of data using an automated experiment. The new effect may be understood as an
interplay between translational and vibrational degrees of freedom of the colliders. Both characteristics of
the oscillation, the wavelength and the amplitude, agree quantitatively with a theoretical description of the

experiment.
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The coefficient of normal restitution (COR) is the key
element to describe dissipative collisions of hard spheres.
It is of great importance to granular matter research as it is
the foundation of both kinetic theory, based on the
Boltzmann equation [1], and consequently granular fluid
dynamics [2], as well as highly efficient event-driven mo-
lecular dynamics of granular matter [3-5]. In all references
on event-driven simulations and kinetic theory of nonad-
hesive granular matter, it is assumed that the COR is either
a constant or a monotonically decaying function of the
impact velocity [6-8]. In the present Letter we will show
that this assumption is not always sufficient to describe the
dynamics of collisions accurately, since, at least for a
certain time, part of the kinetic energy of the relative
motion can be stored in vibrational degrees of freedom.
The aim of this work is to report remarkable results derived
from an exceptionally large amount of data gathered using
an automated experiment. Such experiments, provide clear
evidence that the COR is not a monotonically decaying
function but oscillates as a function of the impact velocity.

The COR, ¢, characterizes the collision of spheres in
hard-sphere approximation. When colliding, the particles
change the normal component of their relative velocity
according to

e = _8(5.,' — U;)¢, (D

where ¥; and v, are the precollisional velocities, v} and 17;-
are the postcollisional velocities, and & = (7; — ;) /|7; — 7l
is the intercenter unit vector at the instant of the collision.
Thus, ¢ is defined as the ratio of the pre- and postcollisional
values of the normal component of the particles’ relative
velocity.

The definition, Eq. (1), implies two consequences:
(a) the velocities change instantaneously while in physical
collisions the interaction force is finite such that collisions
last a finite duration, 7, and (b) the unit vector, &, does not
change during collisions which is an approximation for
finite 7. Both effects may cause complications for oblique
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collisions [9,10] but not for central collisions considered in
this Letter.

For central collisions of viscoelastic spheres, the COR
may be analytically computed from the interaction force
[11-13] to obtain £ as a decaying function of the impact
velocity [14] in good agreement with experiments [15].

Experimentally, the COR may be measured by means of
a ball bouncing on a solid plane, e.g., [16-21]: When the
ball is released from a certain height, the times of impact
may be determined to high precision from the sound emis-
sion using contact microphones:

S(U) _ Atn,n-H

8
, =2At, 1 p 2
Al‘n—l,n v 2 b ( )

where ¢ = 9.81 m/s?> and At;;.| =t;;; —t;, with the
impact times f;. Alternatively, £(v) may be obtained
from the peak heights, 4, ;,, between impacts i and i + 1:

_ hn,n+l _
S(U) - vhn—l,n’ v = Vzghn—l,n' (3)

Experiment.—We performed bouncing ball experiments
using a stainless steel sphere (diameter 6 mm) and a
massive glass plate (40 X 20 X 2 cm?), supported by a
leveled steel baseplate (~ 8 kg). The plates are mechani-
cally decoupled via a 1 mm layer of sorbothane. When
released from the initial height, 8 cm = hy = 12 cm, the
ball comes to rest after typically 80-100 bounces, yielding
the same amount of data points, £(v), via Eq. (2). The
times ¢, are obtained by recording the sound using a piezo-
electric sensor mounted to the glass plate [22] and
edge detection (sample rate 5 X 10°/s, resolution 16 Bit).
The resulting error e leads to an uncertainty de/e <
2.5 X 10™* in the range of v considered here.

To obtain good statistics, the experiment was fully auto-
mated using a robot to position a vertical vacuum nozzle to
a desired starting point: Initially, the steel sphere is held by
the nozzle at a position (xy, o) in the horizontal plane, at a
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distance h, above the plate. By breaking the vacuum, it is
released to bounce repeatedly off the plane. When the
sphere comes to rest, it is blown by a fan into a catch
tank. From there, the robot picks it up again using the
vacuum nozzle and moves it to the next initial position.
Each single experiment lasts for about one minute.

We performed about 5, 000 experiments, resulting in
about 400, 000 impacts. From these impacts we selected
those taking place at impact velocities ranging from 0.3 to
0.7 m/s corresponding to dropping heights from the inter-
val (5, 25) mm. The resulting CORs are shown in Fig. 1.
Clearly, the expected decay of &(v) is superimposed by an
undulation. This can be seen from the data directly but
more obviously from their median. The extraordinary
degree of fluctuations in the data which was earlier noticed
[23] and explained [24], requires a very large set of data to
observe the undulation which is otherwise hidden by noise.
This might be the reason why despite the very large body of
literature available on COR measurements, this effect
seems to be overlooked so far. We wish to note that King
et al. [23] reported a nonmonotonic function &(v) (a single
hump). However the height of the jumps of particles con-
sidered there is in the region of 50 nm, that is about 10°
times smaller than in our case. Therefore, we believe that
the effects reported in [23] are of different origin [25].
Additionally it is known [26-28] that the COR drops to
zero for low impact velocities due to adhesion, which is not
relevant in our setup.

The data shown in Fig. 1 take several days of continuous
measurements. To assure constant conditions, we con-
trolled air temperature and humidity. To avoid damages
of the glass by repeatedly dropping the sphere from the
same position, the initial position, (xy, yy), was chosen
randomly from a dropping zone of size 5 X 5 cm? close
to the center of the plate. The surface of the sphere was
inspected before and after the experiment and no
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FIG. 1 (color online). COR as a function of the impact veloc-
ity. The green line displays the median. Equidistant vertical lines
guide the eyes to the steplike shape of e(v). Typical error bars
are given at v = 0.325 m/s and v = 0.525 m/s.

significant differences were found. Moreover, to check
stationarity, we analyzed the first 10% and the last 10%
of the data separately. Both sets of data lead to identical
statistics up to fluctuations. Thus, no significant influence
of wear was apparent. During the entire measurement we
did not observe any effect of electrostatics.

Theory.—In dissipative collisions, part of the energy of
the macroscopic translational degree of freedom (DOF) of
the particle is transferred into other forms of energy such as
heat, sound emission, and vibration. The influence of
vibrational DOFs of colliding bodies on the dynamics
was intensively investigated experimentally (e.g.,
[17,19,23,29]) and theoretically (e.g., [19,30]). If no vibra-
tional DOFs are excited before the impact, energy will be
transferred from linear motion to vibrational DOFs, that is,
the coupling between vibrational and translational DOFs
leads to dissipation of translational energy [31-34], which
implies & < 1. If, however, particles with excited vibra-
tional DOFs collide, the energy stored in the vibration may
be transformed back into translational energy, in depen-
dence on the phase of the vibration at the instant of the
impact. In extreme cases, even superelastic collisions,
& > 1, may be observed [35,36]. Thus, coupling of trans-
lational and vibrational DOFs may result in both, reduction
or enhancement of the COR. For uncorrelated collisions as
in a granular gas, this behavior may be captured by a
statistical description of the COR [37,38].

To explain the undulation of e(v), we consider the
vibrational DOFs of the colliders, their interaction with
the linear motion, and their effect on the COR in detail. We
show that the time scale due to the oscillation period of the
excited vibrational DOFs relates to other characteristic
times of the system which gives rise to the experimentally
found undulations, Fig. 1.

The characteristic times of the system are (a) the period
of the sphere’s fundamental oscillation, 7, (b) the period
of the baseplate’s fundamental mode, 7,, (c) the typical
contact duration, 7., and (d) the time of free flight, T Note
that effects arising from higher modes of the sphere and the
plate are not observed in our experiment. For the coupling
between translation and vibration, there are four relevant
combinations of time scales: (7, 7.), (75, T¢), (73, 7), and
(74> T¢). While all of them lead to interesting phenomena
[25], only the last combination may be relevant here. The
other combinations are either not in agreement with a
constant period, Av, of the undulation which is clearly
seen in Fig. 1 or the value of Av would be by orders of
magnitude off for our material parameters [25].

Model.—To introduce the model, for clarity we first
provide a simplified version using phenomenological pa-
rameters. Then we refer to the concrete details of the
experiment to obtain quantitative agreement between
model and experiment.

The model is sketched in Fig. 2: We describe the base-
plate as a point mass, m;,, connected via a linear-dashpot
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FIG. 2. Model of the bouncing ball experiment. <3 L
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force to a fixed point (spring constant k;, length [, damp- N . . I
ing ;). The impacting sphere of mass m, interacts with m,, T I T I
also via a linear-dashpot force (k;, I;, v;). < 10 :—(C) —
. e = —
Newton’s equations read < E —
. . # OO e
m, = —mg + Fy, mpxy, = —mpg + Fg, — Fy, - l , | , l ,
4) 0.3 0.4 0.5 0.6
. . . v, (m/s)
with g = 9.81 m/s? and the interaction forces
F.=—Fk _ : 5 FIG. 3 (color online). Elastic ball impacting an elastic plate
gb bEb = Vol ) (v, = v, = 0). All quantities are shown as functions of the
impact velocity, v. (a) COR, &(v,). (b) Baseplate’s oscillation
F. o= 0, ) &=0 (6) phase at impact. (c) Number of complete baseplate oscillations
b max(—k, &, — v,£,0), &, <0, during the period of free flight. Equidistant dashed lines lead the
eye to the relation between the maxima of e(v) and the vibration
where £, = x;, — [, and §; = x; — x;, — ;. The max func- of the baseplate. Parameters: m;, =m,=1g, k;, =k, =500N/m,

tion in Eq. (6) assures the force between the baseplate and

the sphere to be strictly repulsive. We solve Eq. (4) with the

initial conditions

=xb+l,+ho,1; )'Cb=)'c,=0,
(N

xp =1y _mbg/kb; Xy

where h; is the dropping height.

Starting from the dropping height, A ;, the first impact
excites the vibrational DOF of the lower spring and the ball
bounces back to a certain height 4, ,. Using Eq. (3) [39] we
then determine &, and the corresponding v, from £, , and
the maximum height after the second impact, h; ;.

Let us first look to the undamped case, y, = vy, = 0.
Naively (disregarding energy transfer between vibrational
and translational DOFs) here one expects € = 1 since no
dissipative forces are involved. Because of the coupling
of the DOFs, however, we obtain a different result, see
Fig. 3(a). During the first impact, kinetic energy of the ball
is transferred to the lower spring leading to oscillations of
my. During the second impact again energy is transferred
between m, and m,; however, since m,, oscillates with its
eigenfrequency this energy may be positive or negative,
depending on the phase of the oscillation. Consequently,
for elastic interaction, € may be larger or smaller than one.
The vibrational DOF of the baseplate acts as a phase
dependent source or sink for the translational energy,
thus, leading to oscillations of &(v).

Consider now the corresponding dissipative system
(vps ¥, # 0). Here the amplitude of the plate’s vibration
decreases during the free flight, 7, reducing the amount of
transferable energy. As 7, increases with impact velocity,

ly=10=1mm, vy, =y, =0.

&(v) is a decreasing function, superimposed with the oscil-
lation due to the phase of the baseplate’s oscillation. From
the numerical solution of Eq. (4) we obtain the COR shown
in Fig. 4.

The functional form of &(v) obtained from the experi-
ment, shown in Fig. 1, resembles Fig. 4. In particular, both
figures show a decaying function &(v) superimposed by an
oscillation of constant width. Therefore, we believe that the
match or mismatch of the baseplate’s vibration and period
of free flight is responsible for the steplike structure of &(v)
found in experiments.

Beyond the simplified model.—The parameters of the
model are not directly related to the experiment but are
chosen rather arbitrarily. To check the validity of the
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FIG. 4 (color online). COR, &(v), due to Eq. (4), including
dissipative forces. Equidistant vertical lines correspond to the
lines shown in Fig. 3. Parameters: same as in Fig. 3 except v, =
0.09 kg/s and y, = 0.025 kg/s.
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FIG. 5. Smoothed vertical displacement of the plate’s surface
over time for impact velocity v = 0.33 m/s. The left inset
illustrates the applied light shading technique. The right inset
shows a magnification of the region marked by the dashed
rectangle. Horizontal bars highlight the period obtained from
the step width, fP'®¢ =~ 98.1 Hz, being in very good agreement
with the period of the damped oscillation measured here.

model, we refer now quantitatively to the details of the
experiment.

Consider first the length of the undulation, Av, of £(v),
see Fig. 1. The maximum deformation of the plate caused
by the impacting sphere is about 0.25 wm as obtained from
light shading experiments (see Fig. 5). This amplitude is
small compared to the thickness of the soft sorbothane
layer (1 mm) such that the plate may be considered as
unsupported. The eigenfrequencies of a free rectangular,
elastic plate (thickness %, density p) read [40]

Ajj EW?
plate __ i : _
P = —1/D th D=—+, 8
1ij 2ma?® /p i 12(1 — %) ®)

where E is the Young’s modulus, and a is the length of the
shorter side of the plate. For the plate’s aspect ratio 1/2
and Poisson’s ratio v = 1/6, we have Ay, =~ 5.593 for the
lowest eigenmode [40]. For the glass plate used in the
experiment (E = 70 GPa, p = 2569 kg/m?, a = 0.2 m,
h=0.02m) we obtain f5"° ~96.2 Hz. The expected
period of the oscillation of &(v) follows from

Av = g/(2fP4%) =~ 0.051 m/s. 9)

This value is in very good agreement with the length of the
undulation of &(v) shown in Fig. 1 (Av = 0.05 m/s
corresponding to fP2® ~ 98,1 Hz).

Second, we look to the height of the undulation steps,
Ae (Fig. 1): Assume the baseplate oscillates with
—Asin(27fP%€s). The energy transfer from the plate to
the particle is, in very good approximation, maximal when
the impact takes place at an instant where the plate has
maximum upward velocity

2n— 1D

— plate max —
v, = 2A7f at 1, 2 ol

, n=123...

(10)

These values #7#* for the time of free flight correspond to

the impact velocity [see Eq. (2)]
max — 8 2n —1
= 2P T (11)

Similarly, the minimal energy transfer is achieved when
the plate has maximum downward velocity

. 2
v, = —2Amfrlie ¢ min — #f;ﬁw n=123...,
(12)
where #M" corresponds to
g 2n
nmm == — 5 727Tfplate Tr. (13)

Consequently, the postcollisional velocities for impacts
taking place at £* and £"" are

max — late __ ,,max
vmax = A2 fP vl

. . (14)

V;lnm — _A27Tfplate _ v;lnm
and the corresponding CORs are g? = —ymin /ymin 44
gMaX — —ymax /y)max regnectively, see Eq. (1). The ampli-

tude of the undulation, Ae(v), shown in Figs. 1 and 4 is,
hence, given by

AQRafrlae) 4n — |

Ae max _ omin —
T 2n? —

= 811 8}’[

(15)

Consider an impact velocity, v = 0.5 m/s, corresponding
to the ratio of the free flight time to the period of the
baseplate’s oscillation n = (2v/g)fP® = 10.0062 =~ 10.
With the measured amplitude of the oscillation, A =~
0.25 pm, from Eq. (15) we obtain Ae = 0.0006 which is
in good agreement with the measured value Ae = 0.0005
(see Fig. 1).

The oscillation of the plate can be measured using a light
shading technique, Fig. 5. After each impact (large spikes
directed downward), the plate performs a damped oscilla-

tion with almost exactly the predicted fundamental fre-

quency, f0% = 96.2 Hz being in good agreement with the

frequency derived from the step width, fP®¢ ~ 98.1 Hz.
Higher modes of much smaller amplitude are also
observed, Fig. 5 (inset). These modes could lead, in prin-
ciple, also to steps in &(v) of about 10 times smaller width;
however, in this experiment they are not found.
Conclusion.—We performed automated bouncing ball
experiments and observed unexpected equidistant steplike
features in the COR as a function of impact velocity. This
behavior could be explained by a model describing the
energy transfer between the vibration of the baseplate and
the translational motion of the bouncing sphere. By
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detailed analysis of the geometry and material properties of
the experiment we could explain the length and height of
the steps, Av and Ag, found in the experiment quantita-
tively up to very good precision. Our findings give clear
evidence that internal vibrational degrees of freedom of
colliding bodies may be essential for the dynamics of
granular systems.
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