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Abstract When granular systems are modeled by hard
spheres, particle–particle collisions are considered as instan-
taneous events. This implies that while the velocities change
according to the collision rule, the positions of the par-
ticles are the same before and after such an event. We
show that depending on the material and system parame-
ters, this assumption may fail. For the case of viscoelastic
particles we present a universal condition which allows to
assess whether hard-sphere modeling and, thus, event-driven
Molecular Dynamics simulations are justified.

Keywords Granular gases · Hard sphere model ·
Coefficient of normal restitution · Viscoelastic spheres ·
Event-driven molecular dynamics

1 Introduction

Hard sphere modelling of granular systems assumes that the
dynamics of the system may be described as a sequence of
instantaneous events of binary collisions. In between the col-
lisions the particles move freely along straight lines, or bal-
listic trajectories in presence of external fields like gravity.
The hard-sphere model of particle collisions is the founda-
tion of both Kinetic Theory of granular matter, based on the
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Boltzmann equation, e.g. [1–3], and event-driven Molecular
Dynamics (eMD) of granular matter, e.g. [4–6].

In hard sphere approximation, the inelastic collision of
frictionless spheres i and j located at ri and r j traveling at
velocities ṙi and ṙ j is, thus, characterized by the collision
rule describing the instantaneous exchange of momentum
between the colliders,
(

ṙ′
i − ṙ′

j

)
· ê ′

r = −ε
(

ṙ0
i − ṙ0

j

)
· ê0

r (1)

with the unit vector êr ≡ (
ri − r j

)
/
∣∣ri − r j

∣∣. Upper index
0 describes values just before the collision, primed values
describe postcollisional values. Inelasticity is characterized
by the coefficient of (normal) restitution ε.

The instantaneous character of the collisions implies that
as the result of a collision only the velocities of the particles
change but not their positions, r′

i = r0
i , r′

j = r0
j and, thus,

ê′
r ≡ ê0

r . With this, Eq. (1) turns into
(

ṙ′
i − ṙ′

j

)
· ê0

r = −εHS
(

ṙ0
i − ṙ0

j

)
· ê0

r (2)

which allows to compute the postcollisional velocities suc-
cessively for all collisions in the system, which is the basic
idea of eMD. Provided the system may be described as hard
spheres undergoing instantaneous collisions, eMD may be by
orders of magnitude more efficient than ordinary MD inte-
grating Newton’s equation of motion. Recently, extremely
efficient algorithms for eMD simulations have been devel-
oped, e.g. [7].

As physical particles are not perfectly hard but the colli-
sion is governed by finite interaction forces, the hard sphere
model is an idealization whose justification may be chal-
lenged. Especially in view of its importance for Kinetic The-
ory and numerical simulation techniques. In particular, for
finite duration of the collisions the unit vector êr may rotate
during a collision by the angle

123

http://dx.doi.org/10.1007/s10035-012-0324-5


116 P. Müller, T. Pöschel

Fig. 1 Illustration of the used polar coordinates (see text)

α ≡ arccos
(

ê0
r · ê ′

r

)
(3)

invalidating Eq. (2) and, therefore, the hard-sphere approxi-
mation. While this angle is negligible for approximately cen-
tral impacts of relatively stiff spheres, it is not for oblique
impacts of soft spheres [8].

Within this work we quantify under which conditions and
to what extent the condition, ê′

r ≈ ê0
r , of the hard sphere

assumption fails. The aim of the present paper is to pro-
vide a universal condition which allows, for arbitrary colli-
sions of arbitrary elastic spheres, to assess whether the hard
sphere model is acceptable for the description of particle col-
lisions. Thus, we discriminate whether the hard sphere model
is acceptable for systems, characterized by (i) a set of mate-
rial parameters, (ii) particle sizes and (iii) a typical (thermal)
impact velocity. To generalize our result to the case of inelas-
tic collisions, we show that regarding the rotation angle α,
elastic spheres are the marginal case, that is, if ê′

r ≈ ê0
r holds

true for elastic particles, it certainly holds true for inelastic
particles.

2 Collision of spheres

Consider colliding spheres of masses mi and m j located at
ri and r j and traveling with velocities ṙi and ṙ j . With the
interaction force F, their motion is described by

meffr̈ = F , R̈ = 0 (4)

where

R ≡ mi ri + m j r j

mi + m j
, r = ri − r j , meff = mi m j

mi + m j
(5)

are the center of mass coordinate, the relative coordinate and
the effective mass, respectively. The center of mass moves
due to external forces such as gravity and separates from the
relative motion which in turn contains the entire collision
dynamics.

For frictionless particles, the interaction force acts in the
direction of the inter-center unit vector, F = Fnêr , that is,
there is no tangential force and, thus, the particles’ rotation is

not affected by the collision. During the collision the (orbi-
tal) angular momentum is conserved which allows for the
definition of a constant unit vector êL :

L = meff r × ṙ ≡ LêL . (6)

Thus, with the coordinate system spanned by

êx ≡ ê0
r , êz ≡ êL , êy ≡ êz × êx (7)

and with its origin in the center of mass R, the collision takes
place in the êx − êy–plane.1 In the collision plane we formu-
late the equation of motion in polar coordinates {r, ϕ} (see
Fig. 1):

meffr
2ϕ̇ = L , meffr̈ = Fc + Fn = meffr ϕ̇2 + Fn , (8)

with the centrifugal force Fc. With the inital conditions

r(0) = r0 , ṙ(0) = ṙ0 , ϕ(0) = 0 , (9)

Eq. (8) fully describes the collision dynamics for an arbi-
trary normal force Fn . The collision terminates at time t = τ

where [9,10]

ṙ(τ ) > 0 and Fn = 0. (10)

Inserting the first equation of Eq. (8) into the second, we
obtain

meffr̈ = L2

meffr3 + Fn (11)

which fully governs the radial dynamics of the problem.
Note that in contrast to earlier work [9,10] where the coef-

ficient of normal restitution was derived from force laws Fn

here we allow the normal vector êr to rotate during the col-
lision and do not neglect the resulting centrifugal force.

Since for any finite interaction forces, the duration τ of a
collision is finite, for non-central collisions, L �= 0, during
the collision the spheres rotate around their center of mass,
that is, ê ′

r �= ê0
r and α �= 0, see Eq. (3).

It is frequently stated that the hard sphere approximation
and thus event-driven simulations are always justified for
dilute systems where the mean free flight time of the par-
ticles is large compared to the typical collision time. Obvi-
ously, this condition is insufficient. It may be shown that the
characteristics of dilute granular gases such as the coefficient
of self diffusion sensitively depends on the rotation of the unit
vector. [11].

1 For central collisions we have L = 0. In this case êz may be any unit
vector perpendicular to êx , (êx · êz = 0).
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3 Elastic spheres

3.1 Dimensionless equation of motion

The collision of elastic spheres obeys Hertz’ contact force
[12],

Fn = Fel
n = ρ(l − r)3/2 , l ≡ r0 = Ri + R j , (12)

where l denotes the distance between the particle centers
at the moment of impact. The quantity ξ ≡ l − r is often
referred to as the deformation or mutual compression. The
elastic constant ρ reads

ρ ≡ 2Y
√

Reff

3(1 − ν2)
, (13)

where Y , ν and Reff stand for the Young modulus, the Pois-
son ratio and the effective radius Reff = Ri R j/(Ri + R j ),
respectively.

Writing the general equation of motion Eq. (8) with the
force given by Eq. (12) and measuring length in units of X
and time in units of T [10],

X ≡ (−ṙ0)4/5

k2/5
, T ≡ 1

k2/5(−ṙ0)1/5
, k ≡ ρ

meff
, (14)

we obtain

dϕ

dt̃
= cϕ

r̃2 ,
d2r̃

dt̃2
= r̃

(
dϕ

dt̃

)2

+
(

l̃ − r̃
)3/2

(15)

with

t̃ ≡ t

T
, r̃ ≡ r

X
, l̃ ≡ l

X
(16)

cϕ ≡ T

X2

L

meff
. (17)

The scaled initial conditions read

ϕ(0) = 0, r̃(0) = l̃ and ˙̃r(0) = 1. (18)

According to Eq. (15) with the initial conditions Eq. (18), the
binary collision of frictionless elastic spheres is described by
only two free parameters: l̃ and cϕ .

3.2 Rotation of the normal vector

We solve the equations of motion (15) and (18) to obtain
the rotation α of the unit vector, êr , given by Eq. (3) as a
consequence of the collision of elastic spheres. This rotation
occurs for oblique impacts and is commonly neglected in
hard sphere simulations as well as in the Kinetic Theory of
granular gases. Obviously, α depends on the material prop-
erties, particle sizes and on the geometry of the collision as
sketched in Fig. 2.

To illustrate the fact that the rotation of the unit vector is
by far not a small effect even for rather common systems,

Fig. 2 Eccentric binary collision of spheres. The sketched situation
corresponds to the eccentricity d/ l ≈ 0.8 where the rotation angle
drawn in Fig. 3 adopts its maximum
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Fig. 3 Rotation angle α of the unit vector êr as a function of the impact
eccentricity d/ l (see Fig. 2) for rubber spheres, parameters specified in
the text. The marked area shows the interval where α > 30◦ corre-
sponding to 65% of all collisions when molecular chaos is assumed

in Fig. 3 we plot the angle α as a function of the impact
eccentricity d/ l (see Fig. 2). The system parameters (in phys-
ical units) are: radii R1 = R2 = 0.1 m, material density
ρm = 1, 140 kg/m3, Young modulus Y = 107 N/m2, Pois-
son ratio ν = 0.4, impact velocity 20 m/s (material parame-
ters corresponding to hard rubber).

As expected, the rotation vanishes for central collisions.
The rotation adopts its maximum for d/ l ≈ 0.8 (this situation
corresponds to the sketch in Fig. 2) where it can easily reach
values of α ≈ 40◦. The position of the maximum may sur-
prise since in the Kinetic Theory it is frequently assumed that
if at all only rare glancing collisions might deserve a special
consideration. Assuming molecular chaos, that is, e ≡ d/ l
is distributed as d p(e) = 2e de, and the parameters given
above, about 65% of the collisions lead to a rotation angle
α > 30◦ (marked interval in Fig. 3). Consequently, the rota-
tion of the unit vector êr is a significant effect for granular
gases. Particularly for relatively soft materials (like e.g. hard
rubber or nylon).

3.3 Universal description of the rotation angle

For elastic particles the dimensionless equation of motion
of the collision (Eqs. 15 and 18) is fully specified by two
independent parameters, l̃ and cϕ , defined in Eqs. (16) and
(17). Therefore all material and system parameters may be
mapped to a point in the (l̃ , cϕ)-space. The rotation angle α

can be determined by the following procedure:
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Table 1 Parameter space scanned to obtain Fig. 4

Unit Min. Max.

Y (109 N/m2) 0.01 100 Young’s modulus
ν – 0.2 0.5 Poisson ratio
R (m) 0.001 0.1 Particle radius
ρm (kg/m3) 250 3,250 Material density
v (m/s) 0.001 25 Impact velocity
d/ l – 0.01 0.99 Eccentricity

For the definition of impact velocity and eccentricity see Fig. 2

Fig. 4 Rotation angle α as function of l̃ and cϕ . Gray regions indicate
points which do not correspond to any combination of parameters given
in Table 1. (Color figure online)

1. Determine the dimensionless parameters:
{Y, ν, R, ρm, v, d/ l} → {l̃, cϕ}

2. Solve numerically the equations of motion,
Eqs. (15, 18) for 0 ≤ t ≤ τ where τ is the time when the
collision terminates. τ is determined by the conditions
¨̃r(τ ) = 0 and ˙̃r(τ ) > 0 (see Eq. 10).

3. The rotation angle is obtained from α = ϕ(τ).

We performed this procedure for a wide range of relevant
(physical) parameters given in Table 1. In dimensionless vari-
ables, this range corresponds to the interval

2.12 ≤ l̃ ≤ 1.8 · 109 , 2.12 · 10−2 ≤ cϕ ≤ 1.26 · 109. (19)

Figure 4 shows the rotation angle α as a function of l̃ and cϕ

on a double logarithmic scale.
From the definitions of l̃, cϕ , L, Eqs. (6, 16, 17) and

X

T
= −ṙ0 = v

√
1 −

(
d

l

)2

(20)

which follows from the definitions, Eq. (14), and geometry
(see Fig. 2), one obtains

ln l̃ = ln
(
cϕ

) + 1

2
ln

[(
l

d

)2

− 1

]
. (21)

Fig. 5 Rotation angle α as function of l̃ and cϕ/cmin
ϕ

This equation provides some insight into the structure of
Fig. 4 and allows for a more intuitive presentation of the
result. For fixed eccentricity d/ l due to Eq. (21), in the dou-
ble logarithmic scale used in Fig. 4, l̃ is a linear function
of cϕ with slope 1. That is, all collisions taking place at the
same impact eccentricity d/ l are located on a straight line of
slope 1 in the (ln cϕ, ln l̃)-space. The position along this line
is then determined by the remaining system parameters.

The chosen interval, 0.01 ≤ d/ l ≤ 0.99, see Table 1,
implies that the intercept, of all possible straight lines given
by Eq. (21) is bound to the range

− 1.95 ≤ ln l̃
∣∣∣
cϕ=0

≤ 4.61 , (22)

which explains the stripe structure of the data in Fig. 4. All
(ln l̃, ln cϕ)-pairs outside the colored stripe cannot be adopted
for any combination of the parameters listed in Table 1 which
is indicated by the gray areas in Fig. 4.

Figure 4 indicates that among all studied combinations of
parameters only those for −3 � ln cϕ � 9 and 1 � ln l̃ � 8
(dashed region in Fig. 4) may lead to a noticeable rotation
angle α or a significant deviation from the hard sphere model
respectively. Therefore, we draw this region with a higher res-
olution of cϕ and l̃, see Fig. 5. In order to avoid the irrelevant
gray regions, we plot the data over ln cϕ − ln cmin

ϕ instead of
ln cϕ with

ln cmin
ϕ = ln l̃ − 1

2
ln

⎡
⎣ 1

( d
l

)2
min

− 1

⎤
⎦ ≈ ln l̃ − 4.61 (23)

as obtained from Eq. (21) with (d/ l)min taken from Table 1
(see illustration of ln cϕ − ln cmin

ϕ in Fig. 4).
The isolines of constant rotation angle α drawn in Fig. 5

indicate that there is a rather sharp transition between the
regions where α ≈ 0 and α 
 0 in the (ln cϕ, ln l̃)-space.
Hence, regarding the rotation of the unit vector êr , the regions
in the parameter space where the hard sphere model is a justi-
fiable approximation are clearly separated from those where
the hard sphere approximation is questionable.
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3.4 Confidence regions of the hard sphere model

For practical applications one might wish to know whether
a given set of material and system parameters allows for a
hard-sphere description. One important prerequisite for the
hard sphere model is a reasonable small rotation angle α (see
Eq. 3). For the following we assume that the rotation angle αc

is marginally acceptable for the hard sphere approximation
and provide a simple approximate method to decide whether
the given system fulfills the above criterion of small rotation
angles.

Figure 5 shows that for rotation angles up to about 15◦, the
isolines of constant rotation angle are approximately straight
lines of slope m ≈ 0.84 on average. The corresponding inter-
cept tαc decreases with the isoline value αc. From Fig. 5 we
obtain t1◦ ≈ 0.9, t5◦ ≈ −0.29, t10◦ ≈ −0.74 and t15◦ ≈
−0.85.

We specify a collision by

ln
cϕ

cmin
ϕ

= 4.61 − 1

2
ln

[(
l

d

)2

− 1

]
,

l̃ =
[

2Y
√

Reff

3(1 − v2)meff

]2/5 [
v

√
1 − (d/ l)2

]−4/5

l (24)

and define

Dαc ≡ ln l̃ −
(

m ln (cϕ/cmin
ϕ ) + tαc

)
. (25)

Dαc > 0 indicates that the maximally expected rotation angle
is smaller than αc, that is, the hard sphere model is acceptable
for this situation.

4 Inelastic spheres

4.1 Equation of motion

The main conclusion of this Section will be that inelastic
interaction forces which are, perhaps, the most characteristic
feature of granular materials, do not lead to an increase of the
rotation angle α as compared with the elastic case detailed
in the previous Section. Here, we exemplarily discuss a par-
ticular dissipation mechanism, the viscoelastic model which
is widely used for modeling granular systems, e.g. [13–15].
Many other dissipative interaction forces as for instance plas-
tic deformation or linear dashpot damping, lead to very sim-
ilar results.

The collision of viscoelastic spheres is characterized by
the interaction force [16]

Fn = Fel
n + Fdis

n = ρ(l − r)3/2 − 3

2
Aρṙ

√
l − r (26)

with the dissipative constant A being a function of the elastic
and viscous material parameters [16] and the other parame-
ters as described before. The collision terminates at time τ
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Fig. 6 Rotation angle α of the unit vector êr as function of the eccen-
tricity for various dissipative constants A. The elastic parameters are
the same as for Fig. 3
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Fig. 7 Rotation angle α over the dissipative parameter A (lower scale,
full line) and over the coefficient of normal restitution ε (upper scale,
dashed line) for d/ l = 0.5

when ṙ(τ ) > 0 and r̈(τ ) = 0, corresponding to purely repul-
sive interaction, see [10]. The dissipative part, Fdis

n , was first
motivated in [17] and then rigorously derived in [16] and
[18], where only the approach in [16] leads to an analytic
expression of the material parameter A.

We apply the same scaling as in Sect. 3.1 to obtain

dϕ

dt̃
= cϕ

r̃2

d2r̃

dt̃2
= r̃

(
dϕ

dt̃

)2

+
(

l̃ − r̃
)3/2 − cdis

√
l̃ − r̃

dr̃

dt̃
(27)

with the definitions and initial conditions given in Eqs. (16,
17, 18) and additionally

cdis ≡ γ
√

X T ; γ ≡ 3

2

ρ A

meff
. (28)

In contrast to the case of elastic spheres discussed in
Sect. 3, for inelastic frictionless spheres we need three inde-
pendent parameters to describe their collisions, l̃, cϕ and cdis.

4.2 The role of inelasticity

To study the dependence of the rotation angle α on the inelas-
ticity, we repeat the computation shown in Sect. 3.2 (same
elastic parameters) for inelastic collisions where A �= 0. Fig-
ure 6 shows the rotation of the unit vector êr during inelastic
collisions over the eccentricity d/ l (see Fig. 2) for various
dissipative constants A.
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In Fig. 7 we additionally fix d/ l = 0.5 to plot α over the
dissipative constant A. To provide a more vivid quantity for
the inelasticity of the collision, we give α also as a function
of the coefficient of restitution ε corresponding to a central
collision at the chosen impact velocity vn = √

3/2·20 m/s ≈
17.3 m/s [19].

Disregarding for a moment the centrifugal force, the
dependence of the moment of inertia on l(t) and the fact that
the final deformation l(τ ) depends on A [10], the decreas-
ing function α(A) or α(ε) may be understood essentially
from the fact that the duration of the contact is a decreas-
ing function of inelasticity, dτ(A)/d A < 0. This somewhat
unexpected behaviour arises from the fact that a collision ter-
minates when the normal force vanishes (see Eq. 10). That is,
the normal force between two inelastically colliding spheres
vanishes before the spheres completely relax. Equation (10)
then leads to τ being a decreasing function of inelasticity.
A rigorous mathematical proof of this relation can be found
in [9,10]. Thus, the smaller the coefficient of restitution the
shorter lasts the contact and the smaller is the rotation angle
during contact. This explanation is certainly oversimplified
and serves only as a motivation to understand qualitatively
the behavior of α(A).

As shown qualitatively in Fig. 6 and quantitatively in
Fig. 7, for all eccentricities the rotation angle adopts its max-
imum for A = 0, corresponding to elastic collisions, ε = 1.

5 Conclusion

For all real materials the collision of particles implies a rota-
tion of the inter-particle unit vector êr during the time of
contact τ by a certain angle α. This rotation is neglected in
Kinetic Theory of granular systems as well as in event-driven
Molecular Dynamics simulations relying both on the hard-
sphere model of granular particles. Therefore, to justify the
application of the hard-sphere model, one has to assure that
the rotation angle is negligible for the given system parame-
ters. In the present paper, we reduce the problem of oblique
elastic collisions to two independent parameters, l̃ and cϕ ,
and compute the rotation angleα as a function of these param-
eters. The result is universal, that is, α is known for any com-
bination of material parameters (Young modulus Y , Poisson
ratio μ, material density ρm) and system parameters (particle
radii R, impact eccentricity d/ l, and impact velocity v).

For dissipative collisions characterized by the coefficient
of restitution, 0 < ε < 1, we show that the rotation angle
is smaller than for the corresponding elastic case where all
parameters are the same, except for ε = 1. Therefore, to
assess whether the rotation angle is small enough to justify
the hard sphere approximation for a given system of dissi-
pative particles, it is sufficient to consider the corresponding
system of elastic particles discussed in Sect. 3.

For convenient use of our result we provide a universal
lookup table and the corresponding access functions (see
Online Resource). The angle of rotation for a given situa-
tion can be either obtained using the dimensionless variables,
α(cϕ, l̃), obtained from Eqs. (16) and (17) together with Eqs.
(13) and (14) for the present material and system parameters,
or by providing the physical parameters directly.

Concluding we consider our result as a tool to assess
whether the Kinetic Theory description of a granular sys-
tem on the basis of the Boltzmann equation and/or its sim-
ulation by means of highly efficient event-driven Molecular
Dynamics is justified.
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