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Abstract – We study the global organization of oscillations in sigmoidal maps, a class of models
which reproduces complex locking behaviors commonly observed in lasers, neurons, and other
systems which display spiking, bursting, and chaotic sequences of spiking and bursting. We find
periodic oscillations to emerge organized regularly according to the elusive Stern-Brocot tree,
a symmetric and more general tree which contains the better-known asymmetric Farey tree as
a sub-tree. The Stern-Brocot tree provides a natural and encompassing organization to classify
nonlinear oscillations. The mathematical algorithm for generating both trees is exactly the same,
differing only in the initial conditions. Such degeneracy suggests that the wrong tree might have
been attributed to locking phenomena reported in some of the earlier works.

Copyright c© EPLA, 2012

Introduction. – The study of sigmoidal maps has
attracted increasing interest in recent years because
they can reproduce all the complex behaviors commonly
observed in systems like lasers, capable of displaying
spiking, bursting, and chaotic spiking-bursting, as well
as in neurons, which, in addition, can show subthreshold
oscillations, tonic and phasic spiking, normal excitability,
etc. The utility of sigmoidal functions was nicely described
in the pioneering work by Rinzel [1], by Pinto and cowork-
ers [2], in several works dealing with the fruitful maps
introduced by Rulkov [3], and in other families of maps
as surveyed recently in a comprehensive way by Ibarz
et al. [4]. Although the name sigmoidal is not always
explicitly mentioned, e.g., in ref. [5], such behavior can be
easily identified. When combined to form networks, large
arrays of such maps can be used to investigate questions
related with, e.g., emergent complex neural dynamics and
the activity patterns in the brain [6–8].
Motivated by all the aforementioned applications, our

aim here is to show that spiking, bursting and periodic
patterns generated by the paradigmatic sigmoidal family
of maps emerge regularly organized according to a Stern-
Brocot tree [9–15] an elusive and very general hierarchi-
cal tree that was recently identified in certain systems
governed by differential equations [16,17]. The discovery of
Stern-Brocot sequences in discrete-time mappings is very
relevant because such maps allow one to bypass all numer-
ical difficulties usually connected with the integration of
differential equations and to explore with high-resolution

fine details about the hierarchical genesis and organiza-
tion of oscillatory patterns and locking behaviors up to
very high generations (see below). An interesting practi-
cal aspect of our work is that we classify periodic patterns
directly from their period, without resorting to an interme-
diate torus as it is normally done. In fact, the most general
mechanism for the Stern-Brocot sequence does not require
any torus (i.e., a pair of frequencies). This is also the
case for the Farey tree as recognized long ago: “However,
evidence for the tori is suggestive, not conclusive” [18]. As
will be seen below, this important and almost forgotten
caveat is borne out forcefully by the Stern-Brocot tree.
There are two strong motivations for studying sigmoidal

maps and their Stern-Brocot organization of periodic
patterns. One is the fact that the symmetrical Stern-
Brocot tree provides a much more general framework than
the better-known asymmetrical Farey tree and, in particu-
lar, contains it as a sub-tree [11–15]. The other motivation
is that, being more general, the Stern-Brocot tree provides
a natural and encompassing organization to classify stable
nonlinear oscillations and locking phenomena for a broad
class of systems. Surprisingly, the Stern-Brocot tree seems
to have eluded detection in maps so far although, as shown
below, they are not difficult to spot. Of course, this appar-
ently unbalanced situation may be just a result of lack of
familiarity with the more general tree. We hope our report
here to help to cast a fresh light on this subject.
As is clear from the phase diagrams discussed below,

the spiking ordering found for all members of the sigmoidal
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familiy of maps (fig. 1) does not correspond to the ordering
generated by the Farey tree but it is in perfect agreement
with the integers in the Stern-Brocot sum tree (fig. 2).
This “good” tree was devised independently in 1858 by
Moritz Stern [9] and in 1861 by Achille Brocot [10].
Stern was a German mathematician and Brocot a French
clockmaker. The latter used this tree to design systems
of gears with a gear ratio close to some desired value by
finding a ratio of numbers near that value. The Stern-
Brocot and Farey trees are generated by exactly the same
arithmetic principle. However, as abundantly discussed in
the literature [12,13], Stern-Brocot trees are more general
than Farey trees and include them as sub-trees.
The Stern-Brocot sequence differs from the Farey

sequence in two basic ways [12]: it eventually includes all
positive rationals, not just the rationals within the inter-
val [0, 1], and at the n-th step all mediants are included,
not only the ones with denominator equal to n. The Farey
sequence of order n may be found by an in-order traversal
of the left sub-tree of the Stern-Brocot tree, backtracking
whenever a number with denominator greater than n is
reached. “But we had better not discuss the Farey series
any further, because the entire Stern-Brocot tree turns out
to be even more interesting.” [12].
As mentioned, the construction of both trees obeys

exactly the same arithmetical procedure [11–15]. Since
there are abundant reports of observations of the Farey
tree in the literature and virtually none of the Stern-
Brocot tree, it is possible that the degenerate arithmetic
process underlying both trees may have resulted in the
Farey tree being identified far too often, particularly in
situations where the number of accessible patterns is
limited. We hope our work to draw attention for the
necessity of a careful re-examination of the distribution
of frequency-locking plateaus in earlier works.

The sigmoidal family of maps. – The sigmoidal
family of maps is defined by the recurrence relation

xt+1 =A[a− s(bxt)]+Bxt, (1)

where xt is a real variable and A,B, a, b are freely tunable
real parameters whose specific meaning depends of the
sigmoidal function s(x), an S-shaped function (fig. 1).
Typical examples of maps belonging to the sigmoidal
family are the following:

s1(x) = erf(x), s2(x) = tanh(x), (2a)

s3(x) =
x√
1+x2

, s4(x) =−1+ 2

1+ e−x
, (2b)

s5(x) =
2

π
arctan(x), s6(x) =

x

1+ |x| . (2c)

The map with s2(x) plays the key role as the acti-
vator in certain Hopfield neural networks [19–22]. The
map with s5(x) has a practical application in economy
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Fig. 1: (Color online) Comparison of six representative
sigmoidal functions si(x) defined in eqs. (2a)–(2c). Detailed
phase diagrams for three of them are presented in figs. 3–5 (see
text).

where it describes a cobweb model with adaptive expec-
tations [23,24]. The other maps are standard represen-
tations of additional sigmoidal functions that, as shown
in figs. 3–5, share the properties that characterize the
whole sigmoidal class. An additional sigmoidal closely
resembling s1(x) is the Gudermannian function gd(x) =
2 arctan(exp(x))−π/2. Following earlier work [24] and
with no loss of generality, we fix A= 1 and B = 0.7 in
eq. (1). In fig. 1 we compare the distinct functions si(x)
in eqs. (2a)–(2c). As the figure shows, these sigmoids look
relatively similar (but far from identical) and this simi-
larity bespeaks the isomorphism observed in their behav-
iors in real-life applications [21,22]. In fact, they all can
be shown to share isomorphic dynamical behaviors after
simple affine transformations [25]. Also of interest to us
is the fact that such remarkable families of maps can
be obtained abundantly around periodicity hubs [26,27],
the exceptional points in dissipative flows like electric
discharges, lasers and chemical oscillators, etc. [28–30].
With the advent of fast throughput processors it is

becoming increasingly feasible to contrast the control
parameter space of flows and maps, determining their
detailed structure, sorting out their differences and simi-
larities. It is also possible to assess the validity of the
models being used nowadays and the adequacy of parame-
ter sets normally extracted phenomenologically or intro-
duced in an ad hoc manner. Of special interest to us is to
see whether or not specific characteristics normally found
in stability diagrams may be used to infer if the underlying
dynamics is governed by a flow (continuous time dynami-
cal system) or by maps (discrete time systems). For flows,
it is already known that systems governed either by ordi-
nary differential equations (ODEs) or by the much more
complicated delay-differential equations (DDEs) display
similar overall distributions of periodicity islands but with
rather distinct inner arrangements, a fact that should
allow one to discriminate between ODE and DDE dynam-
ics in experimentally constructed phase diagrams [31]. The
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Fig. 2: (Color online) The first few generations of the infinite
Stern-Brocot tree (top), grown as usual [11–15] by arrang-
ing reduced fractions in the [0, 1] interval into n-th–order
sequences. The tree of periods (bottom) is derived from the
Stern-Brocot tree by adding the numerator and denominator
of the fractions. The asymmetric Farey sub-tree is indicated
by dashed lines. Only the symmetric sequence of periods of
the Stern-Brocot tree reproduces the hierarchies of periods
observed for the generic systems of figs. 3–5.

availability of detailed stability diagrams for flows makes
it natural to re-assess the completeness and scope of anal-
ogous diagrams generated by maps.

Stern-Brocot and Farey sequences. – While
performing extensive numerical simulations we noticed
that, upon variation of the control parameters, the
oscillatory patterns of sigmoidal maps invariably emerged
regularly organized according to a distinctive and elusive
sequential way known as the Stern-Brocot tree [11–15],
described in the introduction.
As already mentioned, the nowadays well-established

organization believed to underly complex oscillatory
patterns across all natural sciences is the so-called Farey
tree or, equivalently, Farey sequence [11–15]. Therefore, it
is natural to ask about the relation between the Farey and
the Stern-Brocot trees. In a Farey tree, the sequence of
order n is defined as the sequence of completely reduced
fractions between 0 and 1 which, when in lowest terms,
have denominators less than or equal to n, arranged in
order of increasing size. Each Farey sequence starts with
the value 0, denoted by the fraction 0/1, and ends with
the value 1, denoted by the fraction 1/1 (terms which are
not always shown as belonging to the sequence).
The construction algorithm for the Farey and Stern-

Brocot trees is summarized in fig. 2. The Farey tree is
indicated by the dashed lines. As it is clear from the
figure, the Farey tree represents less than half of the
Stern-Brocot tree. Moreover, as discussed abundantly in
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Fig. 3: (Color online) Phase diagrams illustrating the Stern-
Brocot symmetric distribution of periodicity phases with
respect to the line a= 0 for s5(x) =

2
π
arctan(x). (a) Global

view of the a× b space. The four white boxes are shown magni-
fied in fig. 5. (b) Enlargement of the bottom part of (a),
showing details of the first few larger domains of periodicity.
Numbers refer to the period determined for the map and obey
the Stern-Brocot sequence given in fig. 2. Each panel shows
24002 = 5.76× 106 parameter points.

the literature, the Stern-Brocot is a symmetric tree which
contains the asymmetric Farey tree as a sub-tree [11–15].
In other words, the Stern-Brocot tree is a far more general
tree. The lower panel of fig. 2 presents the tree of periods
which is obtained from the Stern-Brocot tree by adding
the numerator and denominator of each fraction. This
sequence of periods is what is observed when recording
the unfolding of the periodicity while tuning control
parameters.
The Stern-Brocot and the Farey tree have something

quite remarkable in common: both trees are generated by
the same mathematical procedure, referred to as the “Farey
arithmetic” [11,12,14,15]. The only difference between
them are the initial conditions used to begin the construc-
tion of the tree. Since both trees are generated by precisely
the same algorithm, in practical applications it is not
possible to discriminate them by considering just a small
number of generations. In experiments one does not
usually starts to generate the tree from the very beginning,
but only checks if a few periodic patterns obey the Farey
arithmetics. Obviously, observation of just a few periodic
patterns that obey the Farey arithmetics is not enough
evidence to conclusively discriminate both trees.
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Fig. 4: (Color online) Comparison of the Stern-Brocot distribution of periodic phases for sigmoids of decreasing steepness, from
left to right. A decrease in the steepness has an effect similar to zooming in at the bottom of the tree. While the distribution
of periodic and chaotic phases for the sigmoids looks globally identical, differences exist on a fine scale. Colors are as defined
in fig. 3.
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Fig. 5: (Color online) The first six generations of the Stern-Brocot tree. Numbers refer to the period. These panels are
magnifications of the white boxes in fig. 3(a) and each one displays the analysis of 24002 = 5.76× 106 parameter points. Colors
are as defined in fig. 3.

Phase diagrams. – We now present phase diagrams
depicting the distinct periodic and chaotic stability phases
computed for a representative selection of sigmoidal maps,
defined by eqs. (2a)–(2c). Such diagrams were obtained
by determining the asymptotic periodicity (or lack of it)
for the map for each point of a finely spaced mesh in
the a× b parameter plane. Then, by attributing different
colors to the distinct dynamical states it is possible to
obtain very detailed charts characterizing how the periodic
and aperiodic oscillations are distributed in the control
parameter plane, together with the size and shape of
each individual dynamical phase. The number of periodic

phases found is normally high so that parameter regions
turn out to be quite complex mosaics displaying graphi-
cally an intricate chart of phases resulting from the differ-
ent periodic oscillations. Our diagrams show 14 distinct
shadings to represent the 14 lowest periods, as indicated
by the colorbar. Higher periods are plotted recycling
the 14 basic shadings “mod 14”. Black represents chaos,
i.e., represents parameters leading to oscillations with no
numerically detectable periodicity [25]. Comparing figs. 2
and 3 one easily realizes that the sequence of periods of
the map emerge organized according to the Stern-Brocot
tree.
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Figure 3 shows a typical example of a diagram clas-
sifying periodic and non-periodic oscillations supported
by the sigmoidal map, eq. (1), with s5(x) =

2
π
arctan(x).

This diagram reveals an unambiguous organization into
a Stern-Brocot tree which is representative of what we
find for all other functions in the sigmoidal class. Note-
worthy in fig. 3 is that the distribution of periodic and
chaotic phases is symmetric with respect to the central
period-2 domain, a symmetry obviously not present in
the Farey tree. Furthermore, although generated here for
discrete-time dynamics, the typical phase diagrams found
for maps agree very well with those obtained for rather
more complex models governed by ordinary differential
equations [16,17]. Similarly to what happens for differen-
tial equations, the generic unfolding of periodicities in the
sigmoidal maps starts with a 1→ 2 period-doubling. The
central period-2 phase contains two symmetrically located
“armpits”, each one containing its own period-doubling
route to chaos and an infinite alternation of periodic and
chaotic phases “embedded” in its armpits. The largest
periodic structure inside the chaotic phases in each of the
period-2 armpits is a period-3 phase, each one contain-
ing its own pair of armpits. The largest periodic struc-
tures inside the chaotic phase of the period-3 armpits are
period-4 and period-5 phases, as indicated by the numbers.
And this unfolding repeats ad infinitum, with the periods
following the Stern-Brocot sequence. Note that only the
Stern-Brocot tree is capable of reproducing the symmet-
ric cascading produced by the maps.
Figure 4 presents a comparison of the periodic and

chaotic phases for distinct sigmoidal functions making
evident their great structural similarity. The figure shows
clearly that to decrease the steepness of the sigmoids is
equivalent to zooming into the lower part of the phase
diagram. This means that the higher the steepness, the
higher is the number of generations that are visible inside
a constant window of parameters. As fig. 4 shows, periodic
and chaotic phases get compressed very strongly as the
periodicity grows.
To identify unambiguously the characteristic symmetry

of the Stern-Brocot tree we magnify specific portions of the
phase diagrams. For instance, fig. 5 shows magnifications
of the four whites boxes seen in fig. 3(a). Such magnifica-
tions corroborate that the periodic oscillations perfectly
follow the Stern-Brocot tree up to the 6th generation,
a quite high number of generations that is not usually
reproduced in the literature, being particularly difficult
to follow experimentally. We checked the occurrence of
several generations by further magnifications (not shown).
Once more, we recognize that only the Stern-Brocot tree
correctly reproduces the symmetric unfolding of the peri-
odicity depicted in figs. 4 and 5.

Conclusions. – In summary, we find that the most
general and encompassing natural organization of lock-
ing phenomena is symmetric in the period of oscilla-
tion and corresponds to the organization displayed by
a Stern-Brocot tree. The considerations leading to this

result do not involve a torus but, instead, are based on the
direct classification of the periodicity of the physical oscil-
lations observed, not on secondary quantities derived from
them. Since Farey and Stern-Brocot trees are generated
mathematically by exactly the same arithmetical proce-
dure, it may be hard (not to say impossible) to correctly
distinguish them from just a partial analysis based on rela-
tively small parameter intervals or in the consideration of
just a limited number of periods. Furthermore, previous
analysis done without taking into account the complete
symmetry of the underlying tree could be incorrect. Thus,
we believe to be likely to find in the current literature
systems improperly described as organized into asymmet-
ric Farey trees while, in fact, their organization corre-
sponds to the symmetric Stern-Brocot tree. Of course,
there is no reason to believe that every sequence of periods
observed in natural phenomena must necessarily involve
the Stern-Brocot tree. Be it as it may, we hope our results
to draw attention to the need of great care when assert-
ing the nature of sequences of periods. Due to its full
generality, the Stern-Brocot tree provides a rather natural
scenario for classifying the unfolding of stable periodic
oscillations for a broad class of phenomena. We believe
the Stern-Brocot tree to provide a truly universal classifi-
cation for periodic oscillations. As happened for the Farey
sub-tree, other scenarios are likely to be just sub-trees of
the more general Stern-Brocot tree. We hope the results
presented here to contribute to the experimental discovery
of the more general and symmetric organization of locking
phenomena in the near future.
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