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STRUCTURE OF GRANULAR PACKINGS
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Summary We report a numerical investigation of the structural properties of very large three-dimensional heaps of granular material
produced by ballistic deposition from extended circular dropping areas. Very large heaps are found to contain three new geometrical
characteristics not observed before: they may have two external angles of repose, an internal angle of repose, and four distinct packing
fraction (density) regions. Such characteristics are shown to be directly correlated with the size of the dropping zone. In addition, we
also describe how noise during the deposition affects the final heap structure.

Heaps of granular particles have been studied intensively during the past few decades both because of their great relevance
for industrial applications and because, from a theoretical point of view, heaps are simple many-body systems well-suited
to develop and probe theories [1, 2]. A major factor determining the pile structure is the force that it experiences during
the deposition process. Lateral forces constraining 2D piles are quite different from lateral forces in 3D piles. So, it
seems natural to investigate systematically the structure of three-dimensional packings subjected to more complex lateral
forces and to see whether they imply hitherto unnoticed features. Although static piles of granular materials are classical
examples of packings [5], to date there has been no systematic study of spatially resolved packing properties of 3D heaps.
Three-dimensional packings require using a large number of particles, of the order of two to three orders of magnitude
more than in 2D scenarios.
Here we report a study of the density distribution and the angle of repose measured for very large 3D heaps of monodis-
perse spherical particles. We report results obtained for heaps with up to 2.5 × 107 particles dropped sequentially onto
a horizontal plane from a homogeneous “rain” of particles emerging from a circular area-source with adjustable radius.
Three-dimensional simulations are hardly feasible with a full molecular dynamics approach but there are efficient alter-
native ways to address the problem. Here we use the well-known Visscher–Bolsterli (VB) algorithm [6, 7, 3, 4]. Particles
follow the path of steepest descent until they stop after reaching either a local stable minimum or when touching the
ground. After stopping, particles are not allowed to move anymore so that many-particle effects like, e.g. avalanches, can-
not be simulated although a plethora of other effects are nicely reproduced [7, 3, 4]. The key advantage of the sequential
VB algorithm is that it provides a realistic framework to rapidly compute the path of steepest descent and, therefore, al-
lows us to investigate very large assemblies of particles, not accessible with other models. Of main interest is to determine
bulk properties such as density, contact numbers, repose angles, etc.
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Figure 1. (a) Packing fraction for a heap with five contours superimposed showing the growth history and that the flat horizontal
surface decreases as the growth proceeds. The green line segment on the right of the inner triangle shows the prediction of Eq. (1).
Here N = 107. (b) Schematic representation of a generic heap structure and its main characteristics: the angles of repose α, β, γ, and
the four characteristic density zones denoted by A..D. (c) The average contact numbers inside of the heap as a function from radial
distance from the heap axis. The insets display the variation of contact numbers along the two rectangles, as indicated. Here N = 107.

Figure 1a shows the packing fraction as a function from the radial distance from the heap axis for a three-dimensional
heap made of N = 107 particles deposited sequentially from random positions in the extended circular source whose
section is indicated by the solid black bar. To illustrate the growth history of the pile, we superimposed to it five contours
showing the evolving shape obtained after depositing N = 105, 5× 105, 106, 1.6× 106 and 3× 106 particles. From these
contours one sees how the inner triangular density cone gets formed as the flat horizontal surface gets smaller and smaller
when the particle deposition proceeds. The packing fraction was obtained using cylindrical coordinates (r, z, φ) coaxial
with the heap. For masses mi with center of mass at ri then we measured the density ρ(r, z, φ) at position r using the
definition [8] ρ(r) ≡

∑
imiφ[r− ri], where φ is a Gaussian coarse-graining function φ = 1

πw2 e
−(|r|/w)2 , w = 2R, and

R is the particle radius. By averaging ρ(r, z, φ) over φ we get the density ρ̄(r, z), the quantity color coded in Fig. 1a.
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How does the packing fraction vary along large heaps produced by extended sources? This may be recognized both from
the real heap in Fig. 1a and from the summarizing sketch in Fig. 1b. In general, we find heaps to contain four distinct
density (packing) regions: First, there is a triangular region A under the dropping zone. When A grows, particles may
eventually move outside the “shadow” of the dropping source forming the packing zone B. Since in this zone the VB
algorithm requires moving particles to always maintain contact with the heap, outside the shadow of the dropping zone
there is a regionB where the particles are arranged more regularly than inA, which grows on top of a randomly deposited
initial layer. Next comes region C, an intermediary packing that is less regular than that of B but more regular than that
of A. Finally, in D we find the highest density of the heap.
The distinct density zones described above have a remarkable implication for the angle of repose. Instead of the familiar
single angle of repose, we find heaps in fact to display two external angles of repose along with an internal angle, the
boundary between A and C in Fig. 1b. We find a larger angle of repose under the dropping zone, and the usual angle
outside it. These angles were measured as follows. For every zi, we located the points ri defining the outermost surface
points around the heap, plotting them as r = r(z). Using bins with ∆r = 10 particle diameters, we fitted a straight line
through the points (ri, zi) for each bin obtaining the dependence of the local angle of repose θ with distance from the axis.
The average number of contacts among particles is a classic measure to characterize the packing structure of spheres [9].
Thus, we determined the average number of contacts in a similar way as described above for the density but, of course,
replacing ρ(r) by c(r) = (

∑
i ci)/n, where ci and ri are the number of contacts and position of particle i, and n is the

total number of particles inside of the averaging volume. The result of such counting is given in Fig. 1c and is clearly
consistent with our findings described above, in particular the geometrical picture summarized in Fig. 1b.
In addition to the four areas that appear in the packing fraction, the distribution of contact numbers in Fig. 1c shows two
new features: a pronounced jump in contact numbers as one crosses the boundary from the density region A to C, and a
dip between areas C and B. The boundary between A and C corresponds to a “transition zone” i.e. to the points where
the flat surface observed in the earlier stages of the construction of the heap meets the tilted surface. This sharp transition
zone corresponds to an area of high contact numbers where the surface curvature is high (see Fig. 1a) and therefore we
assume the local surface curvature to be responsible for the changes in the average contact numbers. The local curvature
can be determined from the surface r(z) described above. This assumption is consistent with the peak in contact numbers
near the axis (area D): close to the top of the heap the mean curvature becomes very high.
As a final result, we mention that the angles α, β, and γ are not independent from each other and derive a relation
interconnecting them. During the initial phase of the growth the heap has a flat surface (see the five contours in Fig. 1a).
Particles falling onto this flat surface stay on it, since only a quite negligible amount falls of the edge. Particles that
fall onto the tilted surface form a layer of approximately constant thickness on the whole inclined surface. From these
assumptions it is possible to obtain a differential equation for r(h), the function describing how the radius of the flat
surface shrinks as the height h grows with time

dr

dh
= − cot γ = − (r + h cot δ)2 − S2

(r + h cot δ)2 − r2
cot δ, (1)

where S is the radius of the dropping zone and, for simplicity, here we approximate δ = (α + β)/2. Of course, this
equation is only physically meaningful as long as r ≥ 0. The solution obtained by numerical integration for S = 60 is
shown by the green line in Fig. 1a. Solving the equation for h = 0 we get γ0 ≡ γ(h = 0) = arctan(2 tan δ) = 71o. Note
that Eq. (1) can be rescaled with respect to S in such a way that only r/S and h/S appear in it. This means that Eq. (1) is
scale invariant and needs to be solved just once, because of the relation rS(h) = xrS/x(h/x).
In conclusion, 3D heaps of granular matter proves to be quite revealing. As summarized in Fig. 1b, we find such heaps
to be characterized by several new geometrical features: (i) two external angles of repose α and β; (ii) an internal angle
of repose γ, and (iii) four distinct density (packing fraction) regions, A, B, C, D. This means that instead of just the
familiar single angle of repose, heaps may in fact display two distinct angles of repose, a fact implying the existence of
four characteristic density zones in the heap. As for the external and internal angles of repose, α and γ, we showed them
to be interrelated according to Eq. (1), a relation that depends of the radius S of the dropping zone (“rain of particles”).
We have also performed an experiment to investigate the impact of noise in the deposition. Such experiment indicated
that the duality of the angle of repose may be washed out by moderate to strong noise during the deposition process.
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