
Chapter 9
Infinite Networks of Hubs, Spirals, and Zig-Zag
Patterns in Self-sustained Oscillations of a
Tunnel Diode and of an Erbium-doped
Fiber-ring Laser

Ricardo E. Francke, Thorsten Pöschel, and Jason A.C. Gallas

Abstract. A remarkably regular organization of spirals converging to a focal point
in control parameter space was recently predicted and then observed in a nonlinear
circuit containing two diodes. Such spiral organizations are relatively hard to ob-
serve experimentally because they usually emerge very compressed. Here we show
that a circuit with a tunnel diode displays not one but two large spiral cascades. We
show such cascades to exist over wide parameter ranges and, therefore, we expect
them to be easier to observe experimentally.

9.1 Introduction

Numerical simulations have recently uncovered a number of surprising and unex-
pected regularities in the control parameter space of certain dissipative flows. Such
regularities were observed in systems as diverse as electrical circuits containing
either piecewise-linear or smooth nonlinearities, in certain lasers, in chemical oscil-
lators and in several other paradigmatic flows covering a large spectrum of practical
applications [1]– [21]. More specifically, a wide-ranging regular organization of
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spirals was anticipated numerically to exist in the control parameter space of simple
electronic circuit. This organization consists of a doubly infinite hierarchy of spi-
rals converging to focal centers called “periodicity hubs” [2, 3]. Such hubs are very
interesting accumulation points of a doubly infinite sequence of spirals: an infinite
family of spirals characterized by periodic oscillations which is intercalated with an
infinite family of spirals characterized by chaotic oscillations. Every periodic spiral
has a characteristic waveform which evolves continuously along the spiral with a
period that grows without any bound, diverging at the focal point. Loosely, hubs
work like crowded bus stations with busses represent spirals: when arriving at such
“station” following an ingoing spiral one is presented with a doubly-infinite choice
for changing to an outgoing “bus”, i.e. to an outgoing spiral. This is so because
there is an infinite choice of periodic as well as an infinite choice of chaotic patterns
to choose from at the focal point. The selection may be simply accomplished by
suitable selection of parameters. Examples of such hubs and spirals may be seen in
Fig. 9.2 below. That the predicted spiral organization indeed exists in real systems
was confirmed experimentally very recently at the ETH in Zürich [22] using a slight
variation of the original circuit where they were numerically anticipated [2, 3]. Pe-
riodicity hubs were shown to be not isolated points but, instead, to emerge forming
infinite hierarchical networks of points responsible for the organization of all stable
periodic and chaotic phases [8].

Of particular interest for applications is that periodicity hubs are robust against
parameter changes and imply a wide-range of predictable regularity in control pa-
rameter space. This is important because knowledge of the details of the regular
organization of physical parameters allows one to select suitable numerical values
to tailor the operation of circuits, lasers, and all sorts of nonlinear oscillators. By
constructing detailed phase diagrams, i.e. by constructing detailed stability charts
displaying the precise location in parameter space of the dynamical phases, one ob-
tains a powerful instrument to perform accurate parameter changes allowing one to
indeed control the system, not merely to perturb it without having a minimal abil-
ity of predicting in which new dynamic state the system will land after parameters
are changed. Of course, parameter charts also allow one to perform big changes of
control parameters, not just infinitesimally small changes.

So far, the spiral organization around periodicity hubs was observed in elec-
tronic circuits containing piecewise-linear elements [2–4, 22]. This type of circuits
have two features that complicate experimental measurements. First, spirals usually
emerge strongly distorted as, for example, in the paradigmatic circuit of Chua [3,4].
Second, although it is known that spirals arise in infinite hierarchical networks [8],
so far only a single isolated spiral has been detected experimentally [22].

The main reason complicating the observation of spiral networks is that the
parameter regions containing them become significantly compressed making it hard
to record them, particularly in noisy systems. An additional reason is that to observe
networks one first needs to locate adequate two-parameter cuts in an usually
high-dimensional control parameter space. This last task (parameter tuning) may
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Fig. 9.1 Schematic representation of the tunnel diode circuit leading to Eqs. (9.13)–(9.15).
The voltage applied to the diode is denoted by U.

be rather difficult to perform experimentally. In this case computer simulations are
of great help in locating suitable regions to search experimentally for hubs. On in-
teresting additional byproduct is that computations may reveal shortcomings of the
theoretical description of the electronic components (diodes, etc) in the sense that
discrepancies between computations and measurements may emerge.

Here, our aim is to describe a simple autonomous electronic circuit, shown in
Fig. 9.1, which we found to display clear and easily accessible sequences of spirals
in its parameter space, as illustrated in Fig. 9.2 below. Apart from standard capaci-
tances, inductances and resistances, the circuit contains two active elements, namely
a linear negative conductance−g and a tunnel diode.

Chaotic oscillations in diodes were studied quite early in pioneering works by
Pikovsky and Rabinovich [23–25] and other authors, e.g. [26]– [31], in several con-
figurations, autonomous or not. Tunnel diodes were found to display very rich dy-
namical scenarios when their control parameters are varied [24, 26]. Although the
chaotic dynamics of circuits with tunnel diodes seems nowadays to have simply
felt in oblivion, we wish to point out that they contain an unsuspected richness of
dynamics to offer both for convenient experimental exploration as well as to help
developing novel theoretical tools to deal with new complex phenomena being dis-
covered like, e.g. periodicity hubs, which are yet far from understood.

9.2 The Flow Defined by a Simple Circuit with a Tunnel Diode

In this Section we derive the equations governing the self-excited oscillator illus-
trated in Fig. 9.1, containing a tunnel diode. At the end of the Section we comment
an approximation in the original expressions in the literature [24].

From Fig. 9.1, where I denotes the current through the inductance, U the voltage
across C1, and V the voltage across C, using Kirchhoff’s laws we get:
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V −U = rI +
dI
dt

, (9.1)

−I = −gV + C
dV
dt

, (9.2)

I = F(U) + C1
dU
dt

. (9.3)

With the help of an auxiliary variable W ≡ V − rI these equations become

dI
dt

=
W −U

L
, (9.4)

dW
dt

= −I
1− gr

C
+

gL− rC
LC

W +
r
L

U, (9.5)

dU
dt

=
I − F(U)

C1
. (9.6)

Handy adimensional equations can be obtained by introducing the following
changes of variable

τ =

√
1− gr

LC
t≡ ω t, I = (x + 1)I0, U = (z + 1)U0, y =

W −U0

ωLI0
. (9.7)

In addition, we need to replace F(U) by its transformed f (z) in the variable z,
obtaining then:

dx
dτ

= y− U0

ωI0L
z, (9.8)

dy
dτ

= −x +
gL− rC

ωLC
y +

rU0

ω2L2 I0
z +

(
− 1 +

gU0

ω2 I0LC

)
, (9.9)

dz
dτ

=
I0

ωC1U0

(
x− f (z)

)
. (9.10)

Now, by introducing the following abbreviations

δ =
U0

ωI0L
, 2γ =

gL− rC
ωLC

, α =
rU0

ω2L2 I0
, (9.11)

β = −1 +
gU0

ω2 I0LC
= α− 1 + 2γδ, μ =

ωC1U0

I0
, (9.12)

the equations can be written in a much simpler form, namely,

dx
dτ

= y− δz, (9.13)

dy
dτ

= −x + 2γy + αz + β, (9.14)

μ
dz
dτ

= x− f (z). (9.15)
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These equations coincide with those of Pikovsky and Rabinovich [23–25]. However,
we obtain them using ω2 = (1− gr)/(LC) (see Eq. (9.7)) instead of the approxi-
mation ω2 = 1/(LC) used by them. Both expressions agree when gr � 1.

Equations (9.13)–(9.15) are used below to study the dynamics of the tunnel diode.
In Eq. (9.15), the nonlinear function f (z) represents the characteristic function of
the tunnel diode which, for simplicity, we assume to be a cubic function: f (z) ≡
z3 − z.

Before proceeding we mention that Eqs. (9.13)–(9.15) were investigated theo-
retically in 1989 by Carcasses and Mira [32]. Using a Poincaré surface of section,
these authors associated a two-dimensional diffeomorphism T to the differential
equations and then considered the qualitative bifurcation structure of T in the μ× β
parameter plane. Here, however, we consider the quantitative bifurcation structure
observed in the γ× δ parameter plane as generated directly by Eqs. (9.13)–(9.15),
not by an approximate Poincaré proxy.

9.3 The Slow-Fast Dynamics of the Circuit with a Tunnel Diode

Slow-fast systems (also known as singularly perturbed or systems with multiple time
scales) are ubiquitous systems in physics, engineering, and biology in which two or
more processes take place on different time scales [33,34]. They are vector fields of
the generic form

μẋ = f (x,y,μ), (9.16)

ẏ = g(x,y,μ), (9.17)

where μ is a small parameter.
In this context, the flow defined by Eqs. (9.13)–(9.15) is particularly interesting

because the parameter μ in front of the derivative ż may be conveniently tuned to in-
duce dynamical effects happening at different time scales. When μ is small, motions
in the phase space can be divided into slow motions, corresponding to trajectories
on the surface x = f (z), and fast motions, corresponding to the straight lines x =
constant and y = constant. As described by Rabinovich [24], the system has three
states of equilibrium for a broad interval of values of the parameters α, β,γ, and δ,
one state located at the origin, and the remaining pair located symmetrically on the
surface of slow motions. All three states are unstable. If the untwisting of the paths
near the unstable foci, say A and A′, is not too fast, the mapping point cannot leave
the region containing all three states of equilibrium: the mapping point moves out-
ward away from the point A along the spiral and, having reached the line x = ±1
along which the surface of slow motion bends over, it enters the neighborhood of
the symmetrically located state A′. It then follows the paths leaving this point thus
returning to the neighborhood of A, repeating the sequence again and again.

An important property of flows like the one above is that two trajectories lying
arbitrarily close to one another near the boundary at which they break off from the
slow-motion surface, may behave completely differently. Those lying inside the path
tangential to |x|= 1 remain on the slow-motion surface and complete one additional
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Fig. 9.2 (Color online) Top panel: Global view of the control parameter space of the tunnel
diode circuit, Eqs. (9.13)–(9.15), with boxes indicating the location of two periodicity hubs
and spirals of large influence. Bottom panels: magnifications of the white boxes in the upper
panel. Pink denotes divergent solutions. Here α = −0.013, β = 0, μ = 0.1. Each individual
panel displays 2400× 2400 = 5.76× 106 Lyapunov exponents.

turn around the equilibrium point. However, trajectories that are arbitrarily close to
it but located outside this tangential path, fall downward (or rise upward) and enter
the neighborhood of the symmetric state of equilibrium. Thus, as pointed out by
Rabinovich [24], the future of these trajectories depends on fine details of their
past.
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Apart from f (z), the flow defined by Eqs. (9.13)–(9.15) involves only linear
terms, facilitating the theoretical analysis. Mathematically, the equations represent-
ing the circuit with a tunnel diode look quite similar to the ones governing the dy-
namics of the simple piecewise-linear resistive circuit were periodicity hubs were
originally discovered [2,3,8]. Note that numerical simulations do not depend on the
restriction of μ being a small parameter.

9.4 Phase Diagrams

This Section presents several high-resolution Lyapunov phase diagrams discrimi-
nating the nature (chaotic or periodic) of the dynamical behavior observed in the
γ× δ control parameter plane.

Lyapunov phase diagrams are generated by solving numerically the equations of
motion (here with a standard fixed-step fourth-order Runge-Kutta integrator) and
using the solutions obtained to compute all Lyapunov exponents for the system and
plotting the largest nonzero exponent. As it is well-known, Lyapunov exponents
are convenient numerical indicators used to discriminate the dynamical nature of
the asymptotic oscillations observed in dynamical systems, i.e. they allow one to
discriminate between periodic oscillations (which lead to negative exponents) and
chaos (positive exponents).

Figure 9.2 shows Lyapunov phase diagrams summarizing what happens over a
wide portion of the γ× δ control space of the tunnel diode, discriminating periodic
from chaotic phases. As indicated by the color scales, colors represent positive Lya-
punov exponents, i.e. regions where chaos is prevalent. In contrast, periodic phases
are represented using darker shadings. Note that the color scales representing neg-
ative and positive exponents vary independently from each other on both sides of
zero, i.e. the variation is not uniform from the negative minimum to the positive
maximum of the scales. Further, the color table of each enlargement is renormal-
ized according to the minimum and maximum exponents so that colors may vary as
one magnifies specific regions of the parameter space.

In Fig. 9.2 it is possible to recognize something that is very desirable for experi-
ments: the existence of two large-size groups of nested spirals accumulating into dis-
tinct focal points, where the periodicity hubs are located. Converging to each focal
point one sees two groups of intertwined spirals, defined by periodic and by chaotic
oscillations. Both groups seem to contain an infinite number of spirals. As param-
eters approach the focal point, the waveforms of the periodic oscillations evolve
continuously and their periodicity grows without bound. Note that sequences of
shrimps [35–37] occur along the periodicity spiral arranged in consecutive pairs at
each half-turn. Many other interesting parameter domains worth investigating may
be also recognized in Fig. 9.2. For details see Ref. [8].

In Fig. 9.2 and in other phase diagrams here we vary γ and δ over experimentally
accessible ranges. As it is clear from the definitions in Eqs. (9.11)–(9.12), specific
values of γ and δ may be conveniently achieved in more than one way by suitably
selecting numerical values for the several reactances in the circuit. Thus, all circuit
elements are equally important, not just the tunnel diode.
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Fig. 9.3 Examples of V-connections in the control space of the tunnel diode. (a) A zig-zag
pattern PQRS formed by “gluing” V-connections together. The zig-zag continues beyond S
but the additional shrimps are too small to be seen in the scale of the figure. Pink denotes
parameter regions leading mainly to unbounded solutions (divergence); shrimps Q and S are
embedded in it. (b) The V-connection ABC in the white box in (a). One of the legs of R
allows passing between R and B via continuous parameter changes. A complex network of
periodicity domains interconnects these shrimps. Here α = −0.33, β = 0,μ = 0.1.

Figure 9.3 shows a curious and abundant type of interconnection among dis-
tinct clusters of periodicity (“shrimps” [35]), computed here for α = −0.33, β =
0,μ = 0.1. Each panel of Fig. 9.3 shows 1200× 1200 Lyapunov exponents, the
same resolution used in Figs. 9.5 and 9.6 below. Figure 9.3b displays an upside-
down “V-connection” or “V-bridge”, as indicated by the letters ABC. This type
of connection can be seen in Fig. 3 of a recent paper by Celestino et al. [15], who
used a discrete map to study the properties of the unbiased current in the ratchet
transport of particles. The shrimps in Fig. 9.3b are identical to those that combine
to form the infinite chain that composes the continuous spirals in Fig. 9.2. Shrimps
were originally described forming regular sequences of parallel clusters of period-
icity, apparently disconnected from each other [36]. Here, however, the clusters of
stability A and B are clearly interconnected by B, forming a structure that resembles
an upside-down V. The periodicity clusters A, B, and C are contained in the white
box in Fig. 9.3a which contains many such connections forming zig-zag sequences
in parameter space.

As mentioned in the introduction, knowledge of the existence of such parameter
paths interconnecting distinct clusters of periodicity may be obviously used as a
simple and powerful technique to control the system, i.e. to efficiently implement
with a single operation macroscopic parameter changes leading to desirable changes
in the behavior of the system in a predictable way, allowing one to precisely select
which change to implement. In sharp contrast to “control techniques” which rely
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Fig. 9.4 (Color online) V-connections observed in other systems. (a) in an erbium-doped
fiber-ring laser (inside box A), and (b) in the discrete-time Hénon map of Eqs. (9.18)–(9.19).
The two wide periodicity regions inside box B are high-order structures studied in detail for
the Hénon map in Ref. [42]. The black box in (b) contains several additional V-connections
which are too small to be seen in the scale of this figure [43]. Each panel displays results for
2400× 2400 parameter points. Pink denotes parameter regions leading mostly to divergence.

on infinitesimal changes and are totally unable to target any specific final orbit,
knowledge of parameter charts allows one to perform parameter changes of any
arbitrary size and may move to any nearby stable orbit either with a single parameter
jump or with sequences of controlled parameter changes, if so desired.

Figure 9.4 shows that V-connection provinding bridges among periodicity clus-
ters are not difficult to find in other flows and even in the discrete-time models, i.e. in
maps. For example, inside box A of Fig. 9.4a one sees a clear V-interconnection to
be present in the control space of an erbium-doped dual-ring fiber laser [38–40].
Several others interconnections like this one exist over wide range of parame-
ters [41]. The equations of motion and parameters adopted for this laser are given
in the Appendix. Noteworthy in box B of this figure are the cuspidal island and the
large island near it. Such structures appear profusely in parameter space. They have
not been studied so far, although some results are known [42]. After the shrimps,
the cuspidal island and the large island near it are the structures observed more fre-
quently in the parameter space of flows and maps.

Figure 9.4b illustrates a V-connection for the paradigmatic discrete-time Hénon
map defined here as follows [36, 37]:

xt+1 = a− x2
t + byt, (9.18)

yt+1 = xt. (9.19)
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Fig. 9.5 Successive enlargements illustrating a continuous spiral “arising” from a V-
connection in the control space of the tunnel diode. (a) Global phase diagram, with the pair
of boxes indicating the regions magnified in the other two panels. (b) The V-connection part
of a spiral. The white box is magnified in Fig. 9.6. (c) Magnification of the largest box in (a),
showing the V-connection (left box) and the spiral (inside the large white rectangle on the
right). Several other analogous spirals and hubs exist although most of them are restricted to
rather small parameter windows. Here α = −0.33, β = 0,μ = 0.1.

The Hénon map displays a profusion of V-connections, in addition to several other
connections with complex forms that are quite difficult to classify systematically.
The number of interconnections of all sorts is so great that one has the impression
that in the end, all clusters of periodicity might in fact compose just a vast single
network of connected domains fixed by the equations of motion. A more detailed
investigation of the parameter space of the Hénon map is presented elsewhere [43].

Figure 9.5 illustrates a situation where, instead of the zig-zag patterns seen in
Fig. 9.3, the V-connection gives origin to an infinite sequence of shrimps coiling up
to form a continuous spiral. It seems appropriate to recall that a proper and encom-
passing mathematical description of spiral organizations in parameter space is still
to be done. The only scenario that is presently reasonably well-understood is one
associated with a theorem by L. Shilnikov [9, 10].
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Fig. 9.6 Magnification of the white box in Fig. 9.5b showing a complex periodicity cluster
resembling a shrimp but containing a rather intricate network of loci that resemble “super-
stable” loci, a concept properly defined for one-dimensional multi-parameter maps. Here
α = −0.33, β = 0,μ = 0.1.

However, considerably richer scenarios are possible in higher-dimensional slow-
fast systems, particularly when period-doubling cascades follow a Hopf bifurcation
and subsequent canard explosion, producing alternations of periodic and chaotic
oscillations. As the amplitude of the chaotic attractors grows one observes a spiking
regime consisting of large pulses separated by irregular time intervals in which the
system displays small-amplitude chaotic oscillations. This scenario, reminiscent of
Shilnikov’s homoclinic chaos despite the fact that no homoclinic connections are
involved, has been observed very recently in ground-breaking experimental studies
of a semiconductor laser with optoelectronic feedback by Al-Naimee et al. [44]
and in the equations governing a light emitting diode (LED) subjected to the same
feedback [45]. Such experiments provide new insight, showing that key concept
of excitability needs to be extended beyond that familiar to fixed points, into the
realm of higher-dimensional attractors of maps and flows as anticipated theoretically
[46]. They equally show that slow-fast systems are relatively poorly understand and
need to be investigated in more detail. Interestingly, lasers and circuits with LEDs
open now the possibility for probing experimentally such elusive and unexplored
phenomena. For details, see Refs. [7, 45].

Figure 9.6 displays a structure that looks like a shrimp but contains a much more
intricate arrangement of parameters as represented by the white curves inside the
wide periodicity cluster. Such curves look very much like “superstable loci”. How-
ever, as pointed before [2], superstable loci are only defined for one-dimensional
maps, where they mark trajectories passing through at least one “critical point” of
the map, i.e. a point where the derivative of the map is zero [47]. Although Fig. 9.6
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Fig. 9.7 Illustration of a spiral structure extending over a very wide parameter range of the
tunnel diode. Similar spiral arrangements exist over wide ranges for many other choices of
parameters. This structure of the parameter space looks quite similar to the one found in
the control space of Chua’s circuit [3, 4, 8]. Each panel displays 1600× 1600 = 2.56× 106

Lyapunov exponents. Here α = −0.33, β = 0,μ = 0.1.

displays a phase diagram for a flow (not a map), for lack of a proper definition and
a better name we loosely refer to the white curves as being “superstable loci”. Two
important points may be recognized from Fig. 9.6: first, the existence of rather com-
plex periodicity clusters not yet considered theoretically and, second, the necessity
of adequately generalizing some known concepts in order to also deal with pressing
situations that emerge abundantly when considering periodicity clusters of flows.
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We remark that even though stability diagrams for flows display rather interesting
networks of the aforementioned “superstable loci”, there is still no theoretical pre-
scription which would allow one to predict their existence and compute them for
flows. In fact, even a proper name is still to be invented for them.

Figure 9.7 displays spiral structures which extend over very wide parameter
ranges and that, we believe, should be relatively easy to observe in experiments.
Of course, experimental resolution sets a limit on the number of turns of the spiral
that can be observed. Important here is that the regular distribution of the successive
shrimps gives an indication that a spiral has been spotted. For instance, it should
not be difficult to unveil the regular organization simply by plotting bifurcation di-
agrams passing through the diagonal line containing the main body of the shrimps.
The spiral organization seen in Fig. 9.7 looks very similar to spirals reported for
Chua’s circuit when operating both with piecewise-linear or cubic nonlinearities, as
might be seen from Fig. 4 of Ref. [4] or from Fig. 5 of Ref. [8]. How could one
objectively quantify the isomorphism among these systems?

9.5 Conclusions and Outlook

This work presented several high-resolution Lyapunov phase diagrams showing that
a simple circuit containing a tunnel diode displays a pair of large continuous spiral
networks with rich intertwined structures extending over a wide region in control
parameter space. Near them one finds an infinite sequence of smaller spirals, as
described in Refs. [8, 9]. The large pair of spiral networks makes tunnel diodes
quite interesting testground to probe experimentally intricate and elusive dynamical
properties described recently in the literature. We also described the abundance of
a class of shrimp arrangement, certain V-connections [15], which we have shown
to be capable of forming quite long zig-zag paths and networks in parameter space.
Analogous features were also observed in the control space of an erbium-doped
dual-ring fiber laser and of the much simpler Hénon map, known to represent well
the dynamics of loss-modulated CO2 lasers [1]. Spirals and zig-zag patterns offer
an interesting way to move in a controlled and systematic way between families of
stable solutions, quite distinct from the nowadays so popular method of randomly
perturbing trajectories without having any control of the final state to be reached
after application of the perturbation.

Parameter spirals of periodicity (and of chaoticity) emerge from and accumulate
at periodicity hubs: mathematically, such hubs are associated in phase-space with
very small regions of quite strong curvature, sometimes (but not necessarily) involv-
ing homoclinic bifurcation curves of a common saddle-focus equilibrium. These
homoclinic bifurcation curves are arranged in fractal-like sheaves in the parameter
plane [9]. The specific organization of hub networks depends strongly on the in-
teraction between the homoclinic orbits and the global structure of the underlying
attractor [9]. A challenging problem now is to describe what is causing the complex
organization of periodicity clusters in phase diagrams of flows not involving homo-
clinic orbits. Note that presently there is no mathematical framework to predict and
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describe the genesis of hubs and the associated spirals in more general scenarios
where the celebrated theorem of Shilnikov does not apply [7, 9].

The present work also shows that Lyapunov phase diagrams are quite valuable
exploratory tools for practical applications allowing one to understand global fea-
tures of complex attractors. We believe that the use of Lyapunov phase diagrams
can significantly augment and speed-up the understanding of physical models. Lya-
punov phase diagrams focus exclusively on stable solutions, i.e. on features that
are directly measurable experimentally. Lyapunov phase diagrams reveal the oc-
currence of many global bifurcations without recourse to more specialized and de-
manding numerical techniques. They are therefore a very powerful way to begin
the analysis of nonlinear systems and can also be applied to laboratory experiments
which, of course, only detect stable structures. As described elsewhere in detail [7],
note that there is absolutely no need to compute Lyapunov exponents from exper-
imentally measured data. For experimental data it is enough to simply construct
“binary” black-and-white phase diagrams discriminating between two states: pres-
ence or absence of periodicity. A complementary tool of great utility in analyzing
dynamical systems is the direct study of the periodicity and the number of extrema
of the oscillations as parameters are tuned [48, 49] (without resource to secondary
and somewhat artificial quantities derived from the period like, e.g. when artificially
introducing pairs of frequencies in phenomena where such pairs are not naturally
present or not quite justifiable [49, 50]).

We hope the findings reported here to motivate their experimental investigation.
From a theoretical point of view, at present it is totally unclear where to expect hubs
and spirals to be found in flows. It is equally unclear which type of flows should
be expected to contain hubs and spirals, particularly in high-dimensional systems.
Thus, the only way to learn about them is through detailed numerical simulations
and experiments. A related open question is how to optimize the search for the
“most convenient” sections of the high-dimensional surface in control parameter
space so as to better expose the intricacies and the structure of phase diagrams. In
other words, to find an efficient way of quickly asserting the impact of changing all
control parameters. From an experimental pointo of view, an interesting challenge
is to investigate how realistic the simple cubic function used here is to describe
the dynamics of real-life tunnel diodes. Obviously, high-resolution phase diagrams
have the power of revealing eventual shortcomings of the mathematical formulation
of models of natural phenomena. Phase diagrams can show where models need to
be improved to better reproduce experimental measurements.
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Appendix: The Erbium-Doped Dual-Ring Fiber Laser

This Appendix collects the equations for the continuous-time model of the erbium-
doped dual-ring fiber laser.

We follow Luo et al. [38] and consider the erbium-doped dual-ring fiber laser
with the lasing fields in the two rings frequency locked through a coupler c0 with
phase change of π/2 from one ring to the other. In this case, the equations for the
fundamental system are [38–40]:

dEa

dt
= −ka(Ea + c0Eb) + gaEaDa, (9.20)

dEb

dt
= −kb(Eb − c0Ea) + gbEbDb, (9.21)

dDa

dt
= −(1 + Ipa + E2

a)Da + Ipa − 1, (9.22)

dDb

dt
= −(1 + Ipb + E2

b)Db + Ipb − 1, (9.23)
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where Ea and Eb are the lasing fields and Da and Db are the population inversion in
rings a and b, respectively. The parameters ka,kb, ga, gb represent the decay rate and
the gain coefficient of the lasing fields a and b, as indicated. Ipa and Ipb represent
pump intensity in the respective fiber rings. Note that this laser model contains cubic
nonlinearities, similarly to the one present in the tunnel diode model.

For the model above, an interesting paper by Zhang and Shen [40] reported hy-
perchaotic dynamics, in particular for the following set parameters

ka = kb = 1000, c0 = 0.2, ga = 10500, gb = 4700.

These are the parameter values adopted here to compute the phase diagram in
Fig. 9.4. However, we emphasize that the laser phase diagram is not at all sensitive
to these specific values in the sense that similarly looking diagrams are obtained for
a wide range of parameter choices in addition to the above ones [41].
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