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of granular damping we developed a prototype granular damper that attenuates the
vibrations of an oscillatory saw twice as efficiently as a comparable solid mass.
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1. Introduction

Surgical and dental instruments for mechanical material ablation by design often suffer from strong vibrations. These
vibrations disturb the haptic sensing, leading to uncomfortable operation and may damage the joints of the operator’s hand.
The vibrations may lead to decreased accuracy of the instrument’s application and can trigger uncomfortable or painful
sensations in the patient. One method to reduce these unwanted vibrations are granular dampers, that is, cavities filled
with grains. Under vibration, the particles collide dissipatively leading to an attenuation of their total kinetic energy and,
thus, to damping of the vibration.

There is a long history of research on granular damping, e.g. Refs. [1-5]. In comparison to other types of dampers,
granular dampers have several advantages: (a) They are extremely simple and, therefore, cheap—just cavities with particles
inside (e.g. Refs. [6-8]); (b) they require little or no maintenance; (c) they hardly undergo aging unlike viscous liquids or
components of active dampers; (d) they do not require a resting part against which the vibration is damped; (e) unlike
viscous dampers their operation is almost independent of temperature [9]. Also they are suitable for sterilization as required
for medical instrumentation (e.g. Refs. [10,11]).

Other applications of granular dampers include bank note processing machines [ 12], tennis rackets [ 13], mechanical tools
(like the dead blow hammer [14]), turbine blades [15] and even the space shuttle main engine [3].

As a proof of principle, in this work we show that granular dampers, also called particle dampers, are suitable for reducing
unwanted oscillations of saws used for example in medical applications [16].

2. Experimental setup

We concentrate our studies on saws using an electro-mechanically driven oscillating blade. As a reference, a medical
saw of type Aesculap Acculan 3Ti (GA673) was examined and its mode of operation was analyzed. Since a model of this saw
was not available for modifications, a less expensive saw, not certified for medical purposes, but using the same working
principle was used to conduct the experiments (BOSCH PMF 10, 8 LI).
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Fig. 1. Sketch of the oscillatory saw’s driving mechanism. An eccentric disk connected to a rotating axis (gray) drives the oscillatory motion of the saw
blade (black) through a fork (green). The surrounding body, including the saw’s handle (not shown), is connected to the motor (not shown) and to the
rotation bearing (yellow). For better visualization, the eccentricity of the disk was exaggerated. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 2. Experimental setup.

Fig. 1 illustrates the generation of the oscillatory motion. An electric motor drives an axis carrying an eccentric disk. The
eccentric disk is framed by a fork that is connected to the saw blade. When the eccentric disk is rotated the fork is pushed
left and right, thus, generating the oscillatory motion of the blade. The vibrating blade causes a counter-acting motion of the
saw’s body including the handle due to conservation of angular momentum.

The aim of our research is to apply granular dampers to either reduce the total mass of the device while keeping the
vibrational properties invariant or to reduce the vibrations of the handle leaving the total mass of the saw invariant.

The experiments were conducted using a setup as shown in Fig. 2. The saw was suspended by strings in a solid metal
frame and was equipped with accelerometers (Analog Devices AD 22285) next to the blade (front part of the saw) and on top
of the handle to measure the strength of the vibrations. The momentary acceleration data provided by the sensors were fed
into a data acquisition device (NI USB-6251) connected to a PC. The sample rate was 10 kHz and the measurement time was
21 s, so we had 210,000 data points per measurement for our analysis. The front part of the saw where the largest vibration
amplitudes are expected was modified to carry granular dampers attached laterally to the saw (see Fig. 3). A high speed
camera (Redlake MotionScope M3) was employed to record the saw’s motion. The amplitude of the oscillation of the saw
was measured by attaching a marker onto the saw that shows a distinct grayscale value in the high-speed recording and
then determining its centroid for each frame.
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Fig. 3. Saw with prototypical dampers attached. One of the acceleration sensors is fixed at the front side of the case. The red label attached to the blade
is one of the optical markers used for high-speed video recording of the vibration. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

3. Damper design

As shown recently [5], the optimal length, Ly, of a granular damper along the direction of the oscillation is given by

A [ M
Lopt = iy M+ Nm + Olayer, (1)

where Ay is the peak to peak amplitude of the oscillation, M is the net mass of the oscillating object (here the saw without
the granular damper), N is the number of beads of mass m and o,y is the filling height of the damper. Eq. (1) indicates that
the size of an optimal damper depends only on the amplitude of the oscillation but is independent of the frequency.

Eq. (1) was derived for granular dampers attenuating the vibration in linear direction. Nevertheless, although the
mechanics of the saw is different from a linear spring, Eq. (1) can be applied with some modifications. The handle of the
saw is approximately a cylindrical torsion pendulum whose rotation axis is perpendicular to the axis of the cylinder. Driven
by the inertia of the oscillating blade, the pendulum rotates with a tiny amplitude, ¢y & 2 - 1073 rad, around its center of
mass. The motion obeys T = J§, where T is the torque exerted by the blade on the saw. The dampers are mounted close
to the end of the handle, at distance H/2, where H is the length of the saw (length of the axis of the cylinder). There, the
dampers feel the periodic force F = 2T /H. The moment of inertia of a rod of length H and mass M, rotating around its stable
axis is ] = MgH?/12. Finally, for small elongation, ¢, we write ¢ = 2 x/H, where x is the displacement of the damper, thus,
x and F are the coordinate of the damper oscillating linearly around x = 0 and the force acting on the damper, respectively.
Combining these equations, we obtain the equation of motion of the damper in x-direction: F = 1/3MX. Consequently,
Eq. (1) is applicable to our system if we replace M by Mg/3.

There are some side conditions for the design of the damper: First, the damper should not add too much total mass to the
saw for convenient usage. Second, the particles should be free to move in the direction of the saw’s oscillation but not form a
sediment of resting particles, due to gravity, which do not contribute to the dissipation of energy, see Ref. [17] for a detailed
discussion. The formation of larger sediments can be avoided by subdividing the damper into separate compartments, each
containing only a small number of particles. Third, the size and outer shape of the damper should allow for a normal
operation and handling of the saw. These conditions together with the modified Eq. (1) gave rise to the following design
(see Fig. 4): The damper combines 46 small cavities in a polycarbonate box forming a rectangular arrangement of size
60 x 60 mm? and height 4 mm. Each of the cavities contains 9-23 spherical steel beads of diameter 2 mm. The dimensions
of the cavities were chosen accordingly to Eq. (1) for the optimal damper size, taking into account the amplitude of the
oscillation, Ag &~ 300 wm, as determined by means of the high-speed camera, M = 1 kg and Nm = 180 g resulting in an
optimal damper length of Lo = 2.4 mm. To maximize the damping, three layers of dampers were stacked to a damping
unit. Fig. 4 shows a sketch of the designed dampers, and Fig. 3 shows a photo of a pair of damping units mounted laterally
to the saw.
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Fig.4. Schematic drawing of the dampers in front (left) and side (right) view. The black rectangular areas in the middle are the attachment points and the
gray double arrow in the side view illustrates the direction of the blade motion.
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Fig. 5. Characteristic vibrations under load (red dashed line) and without load (black full line) for low driving power. The acceleration measured
synchronously to the blade motion is given in units of gravity g (color online).

4. Experimental results

We analyzed the acceleration data and the high-speed video recordings for the unloaded saw where the saw was freely
suspended as sketched in Fig. 2 and for the loaded case, where the device was applied to saw a piece of wood. Fig. 5 shows
characteristic vibrations of the saw with and without load. By showing an approximately sinusoidal acceleration profile it
justifies the use of Eq. (1) as a starting point for the optimization.

We noticed, however, that the data for the saw under load were not sufficiently (quantitatively) reproducible. This may
be attributed to the mechanism which drives the oscillatory motion of the saw: In the unloaded case, the torque leading to
the oscillation is caused by the moment of inertia of the oscillating blade only, which is a well defined constant. Under load,
there is an extra moment resulting from the interaction of the saw with the material the saw is applied to. Naturally, the
material is gradually degraded by the saw leading to a non-constant torque. A possible way to imitate the load such that
the system stays stationary would be to add an extra mass to the blade, leading effectively to an enhanced torque due to
increased moment of inertia and, thus, to more intense vibration of the saw.

In this study, we restrict ourselves to the experimental investigation of the vibration damping for the unloaded case. To
this end, we analyze the damping efficiency for two different speed settings of the unloaded, that is freely suspended, saw.

Table 1 lists the vibration characteristics of the undamped saw.

To assess the efficiency of granular dampers in an unbiased way we equipped the saw alternatively with granular dampers
and with passive solid masses of the same total mass. We performed experiments using five different setups and two
different settings of the saw’s vibrational agitation, summarized in Table 2.
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Table 1
Vibration characteristics of the saw.
Frequency (low power) (181 1)Hz
Frequency (high power) (220£3)Hz
Amplitude (peak-peak) ~300 um
Max. acceleration (low power) +13¢g
Max. acceleration (low power, with load) +18¢g
Max. acceleration (high power) +20¢g
Table 2
Description of the experimental configuration.
Set  Type of damper Mass (g)  Driving power
1 None Low/high
2 Solid mass 90 High
3 Solid mass 180 Low/high
4 Granular (steel beads) 90 High
5 Granular (steel beads) 180 Low/high
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Fig. 6. Vibrational acceleration in various damper configurations (see Table 2) normalized to the root mean square of the acceleration without damper
for low driving power (red squares) and high driving power (black circles) with error bars from up to 21 unique measurements. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6 shows the average acceleration at low and high driving power (see Table 1) of the saw with and without dampers.
The plotted value is the average of the root mean squares (a,ys) of the acceleration a; measured on the saw’s body:

1 1< ?
Arms = E Z a; — E al ., (2)

normalized by the corresponding value for the undamped case. The number of points in the data set wasn = 2.1 x 10°,
recorded at sampling rate 10 kHz and q; is the instantaneous acceleration. The error bars result from 2o standard deviation
of a;s determined from up to 21 independent measurements per set (the standard deviation inside the single sets was
much smaller than comparing the independently measured sets and is therefore neglected).

Comparing the data for the undamped saw (set 1) with the damping by a solid mass (sets 2 and 3) with the data for the
granular damper (sets 4 and 5) we notice that the granular damper attenuates the vibration about twice as efficiently as the
solid mass. As expected, two damping units operate more efficiently than one (configurations 2 and 4 in comparison to 3
and 5 in Fig. 6). Nevertheless, these data do not allow to provide a reliable scaling law.

To see which frequencies were affected by the dampers, a Fourier transform of the signal was computed. Fig. 7 compares
the power spectrum of the acceleration with and without the dampers attached. All peaks of the spectrum were clearly
attenuated up to about 10 dB by the action of the dampers. The achieved attenuation of the vibration concerns the lowest
modes which are the most important ones for practical applications.

5. Discussion

We investigated the attenuation of the vibrations of an oscillatory saw’s handle by means of two different passive
damping mechanisms: (a) A solid mass was attached to the handle to increase the inertia of the saw’s body. Since the
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Fig. 7. Power spectrum of the acceleration data recorded at the high power setting. One can see the power reduction with the damper configuration set
5 (green solid line) against the undamped case (black dashed line) from configuration set 1 (color online).

saw is suspended by strings which transmit almost no torque, the amplitude of the body’s vibrations is reduced due to
the conservation of angular momentum, albeit the mass does not dissipate any mechanical energy. (b) Granular dampers of
the same total weight as in case (a) were attached to the handle, here part of the kinetic energy is dissipated due to inelastic
collisions. The size of the granular damper was chosen such that the optimal dissipation rate can be expected [5].

We find that granular dampers operate more efficiently than solid mass dampers if the geometry of the dampers is
optimized with respect to the specific amplitude of the vibration. Consequently, by means of granular dampers one can
achieve either more efficient damping while keeping the total weight of the saw invariant or alternatively the weight of the
saw can be reduced by keeping the residual vibration of the handle constant.

It was our aim to provide a proof of principle for a practical application of granular dampers rather than to optimize the
damper such that the most efficient attenuation is achieved. Such an optimization is possible, but always depends on the
specific application.
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