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2Charité, Augustenburger Platz 1, 10439 Berlin, Germany
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The goal of this study is to demonstrate numerically that certain hydrodynamic
systems, derived from inelastic kinetic theory, give fairly good descriptions of rapid
granular flows even if they are way beyond their supposed validity limits. A numerical
hydrodynamic solver is presented for a vibrated granular bed in two dimensions. It
is based on a highly accurate shock capturing state-of-the-art numerical scheme
applied to a compressible Navier–Stokes system for granular flow. The hydrodynamic
simulation of granular flows is challenging, particularly in systems where dilute
and dense regions occur at the same time and interact with each other. As a
benchmark experiment, we investigate the formation of Faraday waves in a two-
dimensional thin layer exposed to vertical vibration in the presence of gravity. The
results of the hydrodynamic simulations are compared with those of event-driven
molecular dynamics and the overall quantitative agreement is good at the level of the
formation and structure of periodic patterns. The accurate numerical scheme for the
hydrodynamic description improves the reproduction of the primary onset of patterns
compared to previous literature. To our knowledge, these are the first hydrodynamic
results for Faraday waves in two-dimensional granular beds that accurately predict the
wavelengths of the two-dimensional standing waves as a function of the perturbation’s
amplitude. Movies are available with the online version of the paper.

1. Introduction
Interest has been growing in the hydrodynamic simulation of complex granular

flows, with the aim of understanding the details of transport in the continuum
limit (Goldhirsch 2003). Because they are both highly nonlinear and non-local, the
mechanisms of granular transport in the dense limit are still obscure. The microscopic
basis of the hydrodynamic approaches to granular flow is the standard kinetic theory
for molecular gases, except for the fact that it includes dissipation (via a constant
or velocity dependent restitution) on collision. While strictly speaking hydrodynamic
descriptions cease to be valid near the close-packing limit and at low coefficients of
normal restitution, such models have been used successfully in situations that are a
long way from their supposed limits of validity, to describe, for instance, shock waves
in granular gases (Bougie et al. 2002; Rericha et al. 2002), clustering (Hill & Mazenko
2003; Brilliantov et al. 2004) and coexisting phases (Meerson et al. 2003, 2004). The
difficulty of a hydrodynamic description of granular materials has been addressed in
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well-reasoned terms in Goldhirsch (1999, 2001). One cannot pretend to overcome the
problems of the hydrodynamic description; however, where it works exceptionally
well, one should ask how and why.

In order to compensate for the energy lost in collisions, the typical forcing
mechanism, which is periodic vibration, induces not only various interesting
phenomena but also the propagation of shock waves originating from the moving
boundary into the system. The flow developed under these conditions is supersonic
and consequently, steep gradients arise in the hydrodynamic fields. For careful
hydrodynamic simulations, it is therefore desirable to use shock-capturing methods
to track the sharp fronts, as well as high-order schemes to provide an accurate
definition of the profiles. To our knowledge, only direct finite-difference methods
have been applied in the literature to solve the Navier–Stokes equations for granular
media. These methods do not yield the correct speed of wave propagations since they
do not use numerical flux decomposition in local variables. Moreover, most of these
methods are inappropriate owing to the implicit or artificial diffusion added to handle
supersonic flow.

In order to show the potential of state-of-the-art hydrodynamic simulations (HD)
applied to granular matter, in this paper we address a paradigmatic problem
of granular dynamics: the observation of Faraday waves and the quantitative
description/comparison of the instability via both hydrodynamic simulations based
on weighted essentially non-oscillatory (WENO) schemes and the well-established
method of event-driven molecular dynamics (MD). A hydrodynamic code has two
difficulties in solving this kind of systems: first, proper parameters must be used
and the code must be finely tuned in order to reproduce the instability of the flat
state which induces periodic patterns. Secondly, the numerical scheme must capture
the propagation of shock waves across the granular bed under vibration and the
discontinuities involved.

The onset of patterns in vertically oscillated granular layers has been numerically
investigated via particle and hydrodynamic simulations by Bougie et al. (2005). The
numerical scheme employed there to solve the granular Navier–Stokes equations is
based upon finite differences plus artificial diffusion. They make a thorough analysis of
the role of fluctuations in pattern inception and the dependence of pattern inception
on the acceleration parameter, and the results mainly refer to the mean square
displacement of the local centre of mass of the granular layer as an order parameter.
Our analysis, on the other hand, is concerned with the instability of the flat state
and how periodic patterns are reproduced. By comparing particle and hydrodynamic
simulations, we assess the validity of granular hydrodynamic simulations in complex
flow problems.

The paper is organized as follows: in § 2, we summarize the hydrodynamic
description of rapid granular flows based on kinetic theory. Section 3 explains the
details of the hydrodynamic code. In § 4, we describe the numerical hydrodynamic
experiment and the molecular dynamics experiment, the results of which are analysed
and compared in § 5. In the conclusions, we summarize our findings and make a final
comparison of both methods.

2. Granular kinetic theory and hydrodynamics
As usual in granular kinetic theory, we follow the evolution of the number density

of particles in phase space (Brilliantov & Pöschel 2004). Given a two-dimensional
granular gas composed of homogeneous disks of diameter σ > 0 and given (x, V1),
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(x − σn, V2) the states of two particles, pairs of their position and velocity, before the
collision, where n ∈ S1 is the unit vector along the disk centres, the postcollisional
velocities are found by assuming that a fraction of the normal relative velocity is lost
while its orthogonal component is unchanged. As a consequence, the postcollisional
velocities are obtained as

V ′
1 = 1

2
(V1 + V2) + 1

2
V′, (2.1a)

V ′
2 = 1

2
(V1 + V2) − 1

2
V′, (2.1b)

where V ′ = V − (1 + e)(V · n)n, V = V1 − V2 and V ′ = V ′
1 − V ′

2, with e being
the constant coefficient of restitution. Let us denote by V∗

1 and V∗
2 the precollisional

velocities corresponding to V1 and V2. The Boltzmann–Enskog equation for inelastic
hard disks gives the evolution of f (t, x, V1) and it can be written as

∂f

∂t
+ (V1 · ∇x)f = σ 2Q(f, f ), (2.2)

where the collision operator is given by

Q(f, f )(t, x, V1) = go(ν)

∫
R2

∫
S1

+

[(V1 − V2) · n]
[ 1

e
Jf (t, x, V ∗

1 )f (t, x − σn, V ∗
2 )

− f (t, x, V1) f (t, x + σn, V2)
]
dn dV2,

in which dense gas effects are taken into account through the pair correlation function
go(ν), where ν is the two-dimensional volume fraction: i.e. ν = πρσ 2/4. The notation
S1

+ means that the above integral on n is computed over those values of n such that
((V1 − V2) · n) > 0. Factor J is the Jacobian of the transformation between post- and
precollisional velocities, where J = 1/e in the constant restitution coefficient case. The
moments of f allow us to compute the macroscopic quantities: the number density

ρ (t, x) =

∫
R2

f (t, x, V1) dV1, (2.3)

the velocity field

U(t, x) =
1

ρ

∫
R2

V1f (t, x, V1) dV1, (2.4)

and the granular temperature

T (t, x) =
1

2ρ

∫
R2

|V1 − U(t, x)|2 f (t, x, V1) dV1. (2.5)

Several formulae have been proposed for go(ν) in the literature, but we have chosen
the convenient formulae obtained by Torquato (1995). More precisely, we use

go(ν) =

⎧⎪⎪⎨
⎪⎪⎩

1 − 0.436ν

(1 − ν)2
for 0 � ν < νf ,

1 − 0.436νf

(1 − νf )2
νc − νf

νc − ν
for νf � ν � νc,

(2.6)

where νf = 0.69 and νc = 0.82 are the freezing packing fraction and the random
close packing fraction, respectively. Their values are taken from the reference above.
The reason for using this formula is that in our analysis we want to go past the
freezing point and approach the critical packing fraction with reasonable accuracy.
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The value of the close random packing fraction νc = 0.82, instead of the hexagonal
packing fraction νc = 0.92 can be justified a posteriori, when comparing the results
of MD and HD simulations.

Expansion methods (Jenkins & Richman 1985a; Goldshtein & Shapiro 1995) were
used to obtain hydrodynamic equations for the two-dimensional granular gas,

∂ρ

∂t
+ ∇ · (ρU) = 0, (2.7a)

ρ

(
∂U

∂t
+ (U · ∇)U

)
= ∇ · P + ρ F, (2.7b)

ρ

(
∂T

∂t
+ (U · ∇)T

)
= −∇ · q + P : E − γ. (2.7c)

They represent the evolution of the number density of particles ρ(t, x), the velocity
field U(t, x) = (U1, U2)(t, x) and the granular temperature T (t, x). The tensor P = (Pij )
is the pressure tensor, given in terms of the tensor E = (Eij ) by

Pij =

[
−p + (2µ1 − µ2)

∑
i

Eii

]
δij + 2µ2Eij , (2.8)

with

Eij =
1

2

(
∂Ui

∂xj

+
∂Uj

∂xi

)
. (2.9)

The principal pressure is related to the density and the temperature through the
equation of state

p = ρε [1 + (1 + e)G(ν)] . (2.10)

It includes a correction to the usual perfect gases law, p = ρε, with the internal energy
density ε = T in two dimensions and G(ν) = νgo(ν), proposed by Jenkins & Richman
(1985a); Goldshtein & Shapiro (1995); Brilliantov et al. (2004) to incorporate dense
gas effects. The vector q = −χ∇T models the heat flux. The viscosities µ1 and µ2,
the thermal conductivity χ and the cooling coefficient γ are density and temperature
dependent whose explicit expression we take from Jenkins & Richman (1985a ,b). The
bulk viscosity is given by

µ1 =
2√
π

ρσT 1/2G(ν) (2.11)

and the shear viscosity by

µ2 =

√
π

8
ρσT 1/2

[
1

G(ν)
+ 2 +

(
1 +

8

π

)
G(ν)

]
, (2.12)

the thermal conductivity is

χ =

√
π

2
ρσT 1/2

[
1

G(ν)
+ 3 +

(
9

4
+

4

π

)
G(ν)

]
(2.13)

and the cooling coefficient is

γ =
4

σ
√

π

(
1 − e2

)
ρT 3/2G(ν). (2.14)

More involved hydrodynamic models incorporate higher-order terms in the gradients
expansion (Goldhirsch 2003), and more accurate expressions for the kinetic coefficients
which include extra terms for moderately dense gases and/or finite inelasticity
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corrections (Garzó & Dufty 1999; Lutsko 2005; Serero et al. 2007). In principle, any
kind of constitutive relations can be easily implemented. The major drawback is that
there is a lack of accurate constitutive relations for two-dimensional granular systems
with density corrections and/or finite degree of inelasticity. This is why we stick to the
inaccurate although widely used Jenkins & Richman (1985a ,b) expressions. Finally,
the vector field F represents the external force acting on the system: for instance,
gravity modulated by the piston movement changing to the moving piston reference
frame. The mathematical validity of the hydrodynamic approximation in the Euler
case was discussed in Bobylev, Carrillo & Gamba (2000).

3. Details of the hydrodynamic code
In order to simulate the granular Navier–Stokes equations (2.7) numerically, we

write them as corrections to a compressible Euler-type system in conservation form.
In fact, we consider the equivalent system

∂ρ

∂t
+ ∇ · (ρU) = 0, (3.1a)

∂(ρU)

∂t
+ ∇ · [ρ (U ⊗ U)] + ∇p = ∇ · P + ρ F, (3.1b)

∂W

∂t
+ ∇ · [UW ] = −∇ · q + P : E + U · (∇ · P) − γ + ρ(U · F), (3.1c)

where the total energy density W is given by

W = ρT + 1
2
ρ|U|2 = ρε + 1

2
ρ|U|2 . (3.2)

The system (3.1) can be rewritten as

∂u

∂t
+

∂

∂x1

f (u) +
∂

∂x2

g (u) = S (u) (3.3)

with x = (x1, x2), obvious definitions for f (u), g (u) and S (u) (see Appendix) and with
the vector u = (u1, u2, u3, u4) whose components are given by

u1 = ρ, u2 = ρU1, u3 = ρU2,

u4 = ρε + 1
2
ρ |U|2 = ρε + 1

2
ρ

(
U 2

1 + U 2
2

)
.

}
(3.4)

As a consequence, equations (3.1) have the structure of a system of nonlinear
conservation laws with sources. Local eigenvalues and both local left- and right-
eigenvectors of the Jacobian matrices f ′(u) and g′(u) are explicitly computable and
included in the Appendix. Let us just mention at this point that these quantities
depend on the sound speed cs . For a general equation of state in which the pressure
is a general function of density and enthalpy p = p(ρ, ε), the sound speed is given by

c2
s =

∂p

∂ρ
+

p

ρ2

∂p

∂ε
= pρ +

p

ρ2
pε. (3.5)

Therefore, in order for the sound speed to be well defined, the pressure must have
first partial derivatives as a function of ρ and ε. In the particular case of the chosen
equation of state (2.10), p is a function of ν and thus of ρ through the function G(ν),
then G(ν) is smoothed out around the freezing point volume fraction νf in order to
make it C1 by a simple Hermite interpolation in a tiny interval around νf . We remark
that the system (3.1) has been solved in dimensional variables for convenience of
comparison to molecular dynamics simulations.
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The numerical method applies a high-order shock-capturing scheme for the
convective Euler part of this system: i.e. the left-hand side of (3.3), while the terms
on the right-hand side S (u), forcing and Navier–Stokes terms, are either directly
evaluated or approximated by second-order central finite differences.

The convective terms (∂/∂x1)f(u) and (∂/∂x2)g(u) are approximated by a fifth-order
finite-difference characteristic-wise WENO method in a uniform grid following Jiang
& Shu (1996). This scheme is a well-known shock-capturing and high-order method
for nonlinear conservation laws that has been adapted to our situation. For the sake
of self-consistency of the paper, we explain the numerical method in detail below.
Extensive benchmarks have shown this method to be particularly well adapted to
control oscillations in shock regimes in classical Euler equations for gases (see the
survey by Shu 1998).

As will be explained in § 5, the forcing gives rise to shocks in our benchmark
experiment. They appear neatly in volume fraction and temperature, as reported in
Bougie et al. (2005). These shocks are of course regularized by Navier–Stokes terms
to large gradient regions, but numerically, they do give the same problems. The
salient property of WENO schemes is that they are high-order discretization methods
(fifth-order in space for WENO5) which still give accurate approximations near shock
regions.

We first restrict ourselves to the one-dimensional procedure and work in a
dimension by dimension fashion to reconstruct each of the fluxes in (3.3). This means
that when approximating (∂/∂x1)(f(u)), for example, the other variable x2 is fixed and
the approximation is performed along the x1 line. Given a uniform grid ri for any
of the spatial variables denoted by r , let us call ui(t) the numerical approximation to
the point value u (ri, t). The corresponding convective term is approximated as

∂

∂r
f(u) � f̂i+1/2 − f̂i−1/2

�r
(3.6)

where f̂i+1/2 is the numerical flux.
Let us briefly describe the general characteristic-wise finite-difference procedure

with flux splitting and flux reconstruction. At each fixed time t , we find the numerical

fluxes f̂i+1/2 in the following way:
Step 1. We first compute an average or intermediate state ui+1/2 using Roe’s formula

as in Shu (1998) and Kamenetsky et al. (2000).
Step 2. We compute the matrices of right R and left R−1 eigenvectors and

eigenvalues Λl(ui+1/2), l = 1, . . . , 4, of the Jacobian matrix f′(ui+1/2) from the formulae
in the Appendix to obtain

R = R(ui+1/2) R−1 = R−1(ui+1/2),

Λ = Λ(ui+1/2) = diag[Λl(ui+1/2)].
(3.7)

Step 3. We transform the values ui and f (ui) in the potential stencil of the
approximation of the flux to the local characteristic coordinates by using the left
eigenvectors:

vi = R−1ui , hi = R−1f (ui) . (3.8)

Step 4. We use global Lax–Friedrichs flux splitting with the transport coefficient
computed from the maximum, in absolute value, of the eigenvalues computed above
to obtain h±

i from

h±
i = 1

2
(hi ± αvi) , (3.9)



Pattern formation in vertically oscillated granular disk layers 125

where the dissipation parameter α is given by

α = max
i,l

|Λl(ui+1/2)|. (3.10)

Step 5. We compute the decomposed fluxes ĥ
+

i+1/2 and ĥ
−
i+1/2 at the middle points

using the high-order reconstruction explained below.
Step 6. We transform the computed fluxes back to the physical space by using the

right eigenvectors

f̂ ±
i+1/2 = Rĥ±

i+1/2, (3.11)

and, finally, we add them to obtain the final numerical flux

f̂i+1/2 = f̂ +
i+1/2 + f̂−

i+1/2 . (3.12)

Instead of the Roe mean and Lax–Friedrichs flux splitting formulae, we can use more
sophisticated and improved methods to avoid numerical diffusion. However, in this
case we do not need them since Navier–Stokes terms will have a regularizing effect
on shock waves in the flow.

In the WENO5 method, the fluxes in Step 5 are reconstructed with a nonlinear
non-local convex combination of three different approximations of the flux by three
different local stencils using the flux upwinding. The contribution of each approxima-
tion to the computation of the final flux value depends on the local smoothness of the
function measured by smoothness indicators based on the local divided differences. If
the function is smooth, the resulting approximation is fifth order. The idea behind this
weighted approximation is that those stencils with a discontinuity or high gradient will
receive almost zero weight in the approximation and so oscillations will be avoided
while keeping a high-order approximation in the smooth parts of the flow.

More precisely, let us denote by ĥ+
i+1/2,l the lth component of the local numerical

flux ĥ+
i+1/2 and by h+

i,l the lth component of the local flux h+
i . Since the computations

below are analogous component by component and fixed for the chosen upwinding,
we have decided not to use the sub- and superindex +

,l for notational simplicity. We

obtain the numerical flux ĥi+1/2 by

ĥi+1/2 = ω1ĥ
(1)
i+1/2 + ω2ĥ

(2)
i+1/2 + ω3ĥ

(3)
i+1/2, (3.13)

where ĥ
(m)
i+1/2 are the three third-order fluxes on three different stencils given by

ĥ
(1)
i+1/2 = 1

3
hi−2 − 7

6
hi−1 + 11

6
hi, (3.14a)

ĥ
(2)
i+1/2 = − 1

6
hi−1 + 5

6
hi + 1

3
hi+1, (3.14b)

ĥ
(3)
i+1/2 = 1

3
hi + 5

6
hi+1 − 1

6
hi+2. (3.14c)

The nonlinear weights ωm are given by

ωm =
ω̃m

3∑
l=1

ω̃l

, (3.15a)

ω̃l =
γl

(ε + βl)
2
, (3.15b)

with the linear weights γl given by

γ1 = 1
10

, γ2 = 3
5
, γ3 = 3

10
, (3.16)
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and the smoothness indicators βl given by

β1 = 13
12

(hi−2 − 2hi−1 + hi)
2 + 1

4
(hi−2 − 4hi−1 + 3hi)

2 , (3.17a)

β2 = 13
12

(hi−1 − 2hi + hi+1)
2 + 1

4
(hi−1 − hi+1)

2 , (3.17b)

β3 = 13
12

(hi − 2hi+1 + hi+2)
2 + 1

4
(3hi − 4hi+1 + hi+2)

2 . (3.17c)

Finally, ε is a parameter that prevents the denominator from becoming zero and
is taken as ε = 10−6 in the computation of this paper. The computation for
approximating ĥ−

i+1/2 is obtained with the alternate upwinding by mirror symmetry
with respect to the index i + 1/2. Shu (1998) gives further details about WENO
reconstruction procedures, smoothness indicators, benchmarks and references for
different applications.

Finally, the resulting ODE system is solved in time by an explicit third-order total
variation diminishing Runge–Kutta scheme introduced by Shu & Osher (1998) with
a local Courant–Friedrichs–Lewy (CFL) numerical stability condition at every time
step, which ensures that the numerical speed is not less than the largest eigenvalue
of the local Jacobian matrix. This is definitely an advantage of WENO methods
over many others in computational fluid dynamics (CFD): that is, in order to be
numerically stable they must integrate implicitly in time.

The numerical stability CFL condition becomes more restrictive as we approach the
random close packing volume fraction. Although viscosity and thermal conductivity
NS terms are treated as sources, they are taken into account in the CFL condition
since diffusion effectively paces the time stepping of the code. This is due to the
dependence of the viscosity and thermal conductivity on the volume fraction, which
results in diverging coefficients for both random close packing and vacuum limits.
Both limits are avoided in the computation shown in this paper by establishing
limits for the volume fraction. These limits are 10−4 and 99.99% of the maximum
volume fraction. Finally, let us emphasize that the cooling term in the temperature
equation in (2.7) is stiff as the particle diameter becomes smaller. In fact, analysing the
dimensionless cooling factor, it is not difficult to see that it is of the order of η−1/2G(ν)
with the dimensionless parameter η = σω2/g. Again, the dependence on G(ν) makes
this term stiffer in near-vacuum regions. A similar analysis shows that the viscosity
terms have an analogous dependence on these parameters. As the particle diameter
becomes smaller, we see a need for an implicit treatment of the NS terms and/or
the cooling term in order to avoid very restrictive CFL conditions. Nevertheless,
numerical results are quite robust and stable by mesh-refinement even if the CFL
condition given by NS terms is not strictly imposed for the reported particle diameter.
However, a fully implicit scheme would dramatically increase the computational cost.
Implicit–explicit Runge–Kutta schemes (Pareschi & Russo 2005), in which stiff terms
are treated implicitly, would be good candidates for computing efficiently at smaller
particle diameters.

4. Numerical experiments
4.1. Structures in vertically oscillated granular systems

When granular matter is exposed to vertical oscillations in the presence of gravity,
spatio-temporal structures are observed at the free surface. Although this was reported
as early as 1831 by Faraday, the effect has been systematically studied only recently
and a variety of patterns have been observed (e.g. Pak & Behringer 1993; Melo,
Umbanhowar & Swinney 1994, 1995; Umbanhowar, Melo & Swinney 1996, 1998;
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(a) ( f )

(b) (g)

(c) (h)

(d) (i)

(e) ( j)

Figure 1. Periodic wave-like pattern in a vertically vibrated granular layer. The period of
the pattern is twice the period of the excitation. The figure shows a two-dimensional MD
simulation of 3000 particles at A = 4.02, f = 3.5 (for details see below). Only a part of the
system is shown. The dashed line indicates the lower amplitude of the oscillation. See movie 1,
available with the online version of the paper.

van Doorn & Behringer 1997; Metcalfe, Knight & Jaeger 1997). Theoretical models
have been made by Tsimring & Aranson (1997) and Rothman (1998).

Here we focus on subharmonic instabilities in a vertically vibrated layer of granular
matter, first reported by Douady, Fauve & Laroche (1989) and then characterized
in dependence on the vibration parameters by Clément et al. (1996) and Wassgren,
Brennen & Hunt (1996). Above a certain amplitude of acceleration, Γ = Aω2/g (A
is the amplitude, ω the angular frequency of the sinusoidal excitation, g is gravity), a
periodic wave-like pattern appears with frequency ω/2. Although the condition Γ > 1
is not necessary for pattern formation (Pöschel, Schwager & Salueña 2000; Renard
et al. 2001), in all experimental observations the onset of the pattern formation was
observed for Γ � 4.

These waves were reproduced in quantitative agreement with numerical MD
simulations by Luding et al. (1996), Luding (1997a) and Aoki & Akiyama (1996)
(see also Bizon et al. 1997; Aoki & Akiyama 1997) and they were also found from
a linear stability analysis of an oscillating granular layer, modelled as an isothermal
incompressible fluid with vanishing surface tension (Bizon, Shattuck & Swift 1999).
Figure 1 shows snapshots of a molecular dynamics simulation.

We should stress that we are considering frictionless disks, so there is no reason to
expect the same curve (wavelength of the pattern versus amplitude) as in experiments.
In fact, it has already been reported by Moon, Swift & Swinney (2004) that if friction
is neglected, the onset of stripe patterns for three-dimensional-MD simulations is
around Γ � 2, as obtained in our results. The value of the onset of patterns has been
discussed by Bougie et al. (2005) and found to be between 1.95 and 2.2 for both MD
and HD simulations. Here, we want to focus on the comparison between the MD
and HD pattern wavelengths as a function of the perturbation amplitudes for the
same set of parameters.



128 J. A. Carrillo, T. Pöschel and C. Salueña

It is difficult to make a CFD simulation of such a system since the granular material
occurs in the dense state (e.g. figure 1b, c) and in the dilute state (e.g. figure 1d, e). A
universal CFD computation should be capable of describing the system in both the
dense and dilute states.

The described effect and its dependence on the system parameters has been much
studied in the literature; in the present paper, it serves as an example to show that our
CFD simulation is in quantitative agreement with MD simulations and, thus, capable
of describing the time-dependent behaviour of granular systems in the dense and
dilute state. For simplicity and better visual representation, here we restrict ourselves
to a two-dimensional system. The generalization to three dimensions is conceptually
simple although computationally expensive.

4.2. Set-up of the molecular dynamics system

Our reference system is an event-driven molecular dynamics simulation (see figure 1).
In event-driven MD, each of the N particles in the system moves along a parabolic
trajectory due to gravity g. This motion is interrupted by binary collisions, where
each of the collision partners changes its velocity according to (2.1). Given particle
positions and velocity at time t , the time of the next collision in the entire system can
be computed analytically. Therefore, in event-driven simulations, time progresses in
irregular steps, from event to event; i.e. from one collision to the next. Unlike force-
based MD, in which Newton’s equation of motion is solved numerically by evaluating
the interaction forces, event-driven MD does not solve Newton’s equation explicitly.
Instead, Newton’s equation is implied in the coefficient of restitution which relates
the relative particle velocity after a collision to the velocity before the collision, (2.1);
that is, the coefficient of restitution itself which, in general, is a function of material
parameters and impact velocity is a result of solving Newton’s equation (Brilliantov
et al. 1996; Schwager & Pöschel 1998; Ramı́rez et al. 1999). In the present paper, we
assume that the coefficient of restitution is a material constant and that it adopts the
value e = 0.75.

The main precondition for applying event-driven MD is the assumption of binary
collisions. This implies hard particles. Although conceptually simple, an efficient
implementation of event-driven MD algorithms is far more complex than force-based
algorithms (see, e.g. Pöschel & Schwager 2005). To compare particle dynamics with
hydrodynamics, event-driven MD must be used since both MD and HD simulations
are based on the same equations, (2.1), which use both the concept of binary collisions
and the coefficient of restitution. In general, there is no simple correspondence between
force-based MD and hydrodynamics.

The disadvantage of event-driven MD is that it is restricted to binary and thus,
instantaneous collisions. While for dilute granular gases this assumption is justified,
for systems with gravity, mathematical reasons prevent us from excluding tree–particle
interactions (also called inelastic collapse, McNamara & Young 1993). The appearance
of the collapse is one serious hint, out of several others, that the hard-sphere model is
limited to the dilute case. There are several numerical tricks for preventing or delaying
the inelastic collapse in MD simulations, provided the density is low enough. Here we
apply the TC-method introduced by Luding & McNamara (1998): if a particle exper-
iences two collisions separated by a lapse of time less than tc, a multi-particle event
is assumed to occur, and the second collision dissipates no energy. In this way, the
infinite sequence of collisions is interrupted. For a detailed description and theoretical
foundation see Luding & McNamara (1998). In our simulations we used tc = 10−8.
Less than the fraction 10−6 of all collisions needed to be corrected in this way.



Pattern formation in vertically oscillated granular disk layers 129

Γ N f A L H Np λ dλ L/Np

2.00 1879 5.5 1.64 300 6 15 18 21 20.00
2.00 2506 5.0 1.99 400 6 16 25 18 25.00
2.00 2506 4.5 2.45 400 6 13 31 18 30.76
2.00 2506 4.0 3.12 400 6 11 37 15 36.36
2.00 3132 3.5 4.02 500 6 12 42 5 41.66
2.00 3759 3.0 5.50 600 6 12 50 10 50.00

2.25 1566 6.0 1.55 250 6 12 21 9 20.83
2.25 1879 5.5 1.85 300 6 13 23 7 23.07
2.25 2506 5.0 2.24 400 6 15 27 4.5 26.66
2.25 2506 4.5 2.76 400 6 14 29 4.5 28.57
2.25 3759 4.0 3.51 600 6 19 31 2 31.57
2.25 3759 3.5 4.52 600 6 14 43 7 42.85
2.25 3759 3.0 6.19 600 6 12 50 13 50.00

2.52 1880 5.5 2.07 300 6 15 20 9 20.00
2.52 1880 5.0 2.50 300 6 12 25 7 25.00
2.52 1880 4.5 3.09 300 6 11 27 6 27.27
2.52 1880 4.0 3.90 300 6 9 33 6 33.33
2.52 3132 3.5 5.07 500 6 12 42 7 41.66
2.52 3132 3.0 6.92 500 6 10 50 16 50.00

2.75 3132 3.5 5.57 500 6 13 39 8 38.46
2.75 3132 3.0 7.59 500 6 9 56 13 55.55
2.75 3759 2.5 10.9 600 6 9 67 15 66.66

Table 1. Performed MD simulations. N , number of particles; f = ω/2π, frequency of the
oscillating bottom wall (in Hz); A, amplitude of the oscillation; L, system width; H , number
of particle layers. The observed patterns are characterized by Np , number of peaks; λ, wave
length; dλ, standard deviation of the measured wavelength over 50 cycles. All lengths are given
in units of the particle diameter.

To compare event-driven simulations with CFD results, we performed simulations
of an assembly of N particles of diameter σ = 10 mm, colliding according to (2.1)
with a coefficient of restitution e = 0.75. The width of the system is L. After the
transient time and once the pattern was almost periodic with period 2/f , where f

is the frequency, we recorded the horizontal positions of all particles for 50 periods.
The number of peaks Np of this pattern was then determined by visually inspecting
the histogram of this data. In addition, we also determined the wavelengths λ of the
pattern by Fourier analysis, which is in good agreement with the values for Np .

Table 1 shows the parameters of the event-driven MD simulations performed and
the results for Np and λ, extracted from Fourier analysis. The standard deviations dλ
account for the spread of the wavelength, which at very low amplitudes/accelerations
is specially high. The range of amplitudes A and accelerations Γ investigated was
devised to capture the development of the instability; the width of the system L was
chosen to ensure that a sufficient number of wavelengths fit the simulation window –
so the errors in the determination of λ are diminished. These results will be discussed
in § 5 and compared with the results of the computational hydrodynamics.

Hydrodynamic fields such as density, velocity and temperature were generated from
50 cycles of the MD simulation at amplitude A = 5.6 σ (σ is particle diameter) and
frequency f = 3.5 Hz, so that they could be compared with the respective fields from
the HD simulation. For this purpose we used a 150 σ × 50 σ grid. The positions and
velocities of all particles were recorded for 50 periods at a rate of 50 fixed equidistant
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phases per period. In order to generate hydrodynamic fields, phase averaging was
performed over particle positions and velocities with a spatial coarse graining function
(Goldhirsch 1999) φ(r) ∝ θ(σ/2−|r−ri(t)|) where θ is the Heaviside step function and
ri(t) the instantaneous location of the centre of a particle. The cell size for averaging
fits about 3 × 1 particles, which leaves us with a typically mesoscopic procedure.

4.3. Set-up for the hydrodynamic system

We solve the full set of equations in two dimensions (2.7) supplied with the
kinetic coefficients given by (2.11)–(2.14) and the equation of state (2.10) on a
150 × (50 up to 100) rectangular grid. The initial state is prepared by allowing the
material to settle under the action of gravity and form a deposited layer of 6 grains.
The depth of the granular bed is imposed by assuming a close random packing
density in the deposited layer. As in MD simulations, the diameter of the grains is
σ = 10 mm and their restitution e = 0.75.

The domain in which the hydrodynamic equations are solved varies between 300σ

and 600σ in the x1-direction, and between 30σ and 100σ in the vertical or x2-
direction for the range of amplitudes A and frequencies f tested in the simulations
(1.5σ to 15σ in amplitude, 2 to 6 Hz in frequency). In this way we make sure that
the scale of the pattern is correctly modelled and a sufficient number of pattern
wavelengths are captured. The choice of the vibration parameters is adjusted to cover
the bifurcation region; that is, the region in which the granular layer destabilizes from
the homogeneous (in the x1-direction) solution. In general, we use exactly the same
values for the parameters as in the MD simulations.

Let us again point out that the moving boundary is treated by changing the
reference frame to that of the oscillating piston. As a consequence, (2.11)–(2.14) are
solved in a fixed rectangular domain with a total force field composed by the gravity
and the oscillating harmonic term from the change in the reference frame. The ceiling
then oscillates with the moving plate.

We use periodic boundary conditions along the x1-direction, while at the top
and the bottom we set reflecting boundaries. Boundary conditions for the kind of
numerical methods introduced in § 3 are set by imposing the values of the computed
quantities–density, velocity and total energy–on a buffer of ghost points outside the
computational domain. For a WENO5 method, we need three ghost points outside
the computational grid. Periodic boundary conditions are approximated by copying
all values of the computed quantities from the other end of the periodic boundary
to the ghost points. Reflecting boundaries are simulated by using mirror symmetry
with respect to the wall to flip all values of the computed quantities from inside the
computational domain to the ghost points while changing the sign of the vertical
velocity. Reflecting boundaries set in this manner numerically impose conditions of
impenetrability and zero total energy flux through the solid walls, i.e. zero normal
derivative for the density and the total energy, and U2 = 0 on the top and the bottom
walls.

The top wall is set at a distance at which reflections are of minor importance (the
packing fraction at these heights is always of the order of 10−4). The hydrodynamic
fields (density, velocity components, temperature) are stored for subsequent inspection
without any additional treatment. Since the homogeneous solution tends to be very
stable in the absence of random sources, we numerically perturb the layer density
with a collection of modes (the first 20 of which have the longest wavelengths) at
random phases and amplitudes. The latter are selected so that their maximum is
of the order of 10−3 times the value of the local packing fraction of the deposited
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Figure 2. Eight pictures of the density as obtained from the numerical solution of the
hydrodynamic equations (HD, left) and the corresponding ones from the molecular dynamics
simulation (MD, right). The times for the HD snapshots are: 0, 0.25T , 0.5T , 0.75T , T , 1.25T ,
1.5T , 1.75T , with T being the oscillation period. The MD snapshots were taken at times: 0,
0.25T , 0.5T , 0.86T , T , 1.25T , 1.5T , 1.86T . The initial phase is arbitrary, but common to both
sets. For most of the period, the dynamics observed in HD and MD simulations is completely
equivalent; the difference in the third and seventh phases is due to different landing times of
the granular bed (see text). The MD figures are obtained after averaging particle positions
over 50 cycles, while the density field on the left is the raw output. The frequency of vibration
is f = 3.5 Hz and the amplitude A = 5.6 diameters. Complete sequences are available as
movie 3 with the online version of the paper.

material. This small perturbation is sufficient for the growth of the mode selected by
the system to be observed which gives rise to the development of the Faraday waves
(see movie 2 available with the online version of the paper).

5. Results
Unlike particle simulations, in hydrodynamic simulations the patterns tend to be

very stable and regular. The selected wavelength grows within 10 cycles once the
perturbation has been imposed, and only minor changes are observed after this time.
The periodicity of the pattern is twice the shaking period, as corresponds to the typical
period doubling of this instability. Figure 2 shows the appearance of the pattern in
a sequence of eight frames which covers two shaking periods and the corresponding
frames generated from the MD simulation.

The main difference between the HD and MD sequences in figure 2 is the different
landing time of the granular bed. The fourth and the eighth snapshots were taken
when the material visibly started to deposit, which happened at different times in HD
and MD simulations. This deserves careful discussion. One of the typical features
accompanying the instability is the gap formed between the material and the bottom
wall, induced by an acceleration of the plate at Γ > 1. In both real experiments and
MD simulations – and ignoring the effects of particle noise – there is a true empty
space that periodically opens and closes. In HD simulations, the density is never
very close to zero at the bottom wall. This has to be attributed to the implemented
boundary condition. More will be said about this later in this section.

The bifurcation diagram (figure 3) clearly shows the extent of the agreement
between both types of simulations. The results quantitatively diverge by no more
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Figure 3. The wavelength of the pattern as a function of the amplitude of shaking, for
different reduced accelerations Γ . Filled symbols, numerical solution of the hydrodynamic
equations; open symbols, event-driven molecular dynamics simulations. (b) An enlargement of
the figure at low amplitudes. Error bars are drawn only for MD datapoints.

than 20%. Close to the bifurcation point, though, there is an important exception:
according to the hydrodynamic simulations, the pattern starts to form between 1.55
and 1.64 diameters of amplitude, since below A = 1.64σ it is not observed at any
reduced acceleration Γ = A(2πf )2/g in the range from 2.0 to 2.75, where g is the
acceleration due to gravity. The MD simulations, however, provide a few non-zero
wavelengths in the region of very low amplitudes. Nevertheless the errors associated
with these MD measures are particularly large, and come from the procedure for
determining the characteristic pattern wavelength in MD simulations: owing to
the general contribution of particle noise, the wavelength was extracted from the
histogram of the Fourier analysis of the particle positions over 50 periods. Otherwise,
in the low-amplitude regime, no pattern would be discerned by visual inspection
of the MD sequences. Therefore, the typical histograms contain a wide spread of
wavelengths in this regime, which is reflected in the standard deviations (dλ in
table 1) plotted in figure 3 as error bars. The duplicate data points in some of
the hydrodynamic samples are situations where a child peak develops or disappears
(owing to finite size effects introduced by the periodic boundaries) and, as a result,
both wavelengths can be observed in the course of one simulation. This tends to
happen in the large-amplitude regime (outside the enlarged region in figure 3), where
the pattern is less stable. Patterns in the MD simulation are not so stationary,
particularly at low amplitudes. However, the pattern formation phenomenon is quite
robust in hydrodynamic simulations.

Figure 4 shows the obtained MD and HD wavelengths as a function of the
frequency. The curves represent different theoretical approaches. Luding (1997b)
showed that the empirical curve (dashed line)

λ =
√

H

(
λ∗ +

g∗

f 2

)
, (5.1)

with the values for the constants λ∗ = 7.2 mm and g∗ = 1.35 m s−2, obtained in
a quasi-two-dimensional experiment with aluminium particles, fitted successfully his
MD results. However, we cannot expect that the empirical curve fits the wavelengths
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Figure 4. Fit of the wavelength as a function of the frequency (solid curve). The dashed and
dot-dashed curves are the empirical fit and the shallow-water dispersion relation, respectively
(Luding 1997b). See text for a detailed explanation.

obtained for our frictionless particles. As a matter of fact, we obtain a different set
of constants for the same type of fitting function: λ∗ = 6.0 mm and g∗ = 1.35 m s−2

(solid curve). The dash-dot curve corresponds to the shallow-water dispersion relation
ω2/4gk = tanh(hk) (Luding 1997b), from which both the present fit and the empirical
curve depart at low frequencies.

Figure 5 shows a two-period sequence of the vertical profiles of the packing fraction
ν and the rescaled internal energy νT /σg, as a function of height in diameters. For
the plots, we have selected one of the locations in figure 2 where a valley/cusp
develops alternately. Figure 5(a) shows the granular material that is already being
compressed by the incoming bottom wall. As can be seen, the layer (solid line) is
small so the profile corresponds to the location of a valley at this time. The thermal
energy is high and has started to propagate upwards after the impact. The shock wave
can be identified by the quick rise in the thermal energy along with a simultaneous
compression of the suspended (cold, dilute) granular layer seen at the bottom of the
density profile. In figure 5(b) the layer is thickening while at the peaks it is thinning,
as figure 5(f) shows. In figure 5(c), the energy has already propagated to the top,
the material is suspended and rather fluidized, and the cusp is visible. In figure 5(d),
another impact is taking place, the density is growing at the bottom, and one more
shock wave has been generated, the energy of which fades as the peak redissolves
to feed the closest locations where new cusps are forming. Indeed, in figure 5(e),
the material is closely packed at the bottom, so density can only further decrease
by pressure gradients. The comparison between figures 5(c) and 5(g) shows that the
densities are very different in peaks and valleys, so the shock progresses differently:
the energy rises to the highest values at the cusps, whereas at the valleys the energy
peak is less pronounced. Let us emphasize that figures 5 and 8 show the rescaled
internal energy νT /σg instead of the temperature profiles. The reason is the high
level of particle noise in the MD results above the granulate. However, we can also
interpret the results in terms of temperature. For example, since in figure 5(c) the
internal energy is broadly constant whilst the packing fraction decays, the granular
temperature in fact increases with height, showing the remnants of the shock wave
propagation through the cusps.

A careful analysis of the shock wave propagating through a homogeneous vibrated
bed (i.e. the stationary flat state) has been done by Bougie et al. (2002) and here it
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Figure 5. Hydrodynamic simulation: a two-period sequence of the vertical profiles of the
packing fraction ν (solid line) and the rescaled internal energy νT /σg (dashed) as a function
of height, in diameters, for the same times as the snapshots in figure 2 (left-hand side).

suffices to point out that the flow is indeed supersonic. The Mach numbers range
from 0 to 10 (see figure 6 for the typical oscillations of the Mach number in valleys
and cusps). The Mach numbers are highest in the dilute phase, but not far from the
dense phase. The figure shows the Mach number that was recorded at the height at
which the packing fraction is 5%, which is a convenient measure of the interface
between the dense and rarefied material. The convective motion along the x1-direction,
which removes material from the dense towards the dilute locations, will be analysed
below.

For the MD simulation, the time-dependent thermal energy was extracted by
averaging over 50 cycles the corresponding phases of the local fluctuational kinetic
energy, as defined by (2.5). Afterwards an average over equivalent locations was
performed. The profiles are shown in figure 8. Comparison between figures 5 and
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Figure 6. Solid line, evolution of the Mach number over two periods for the frames in figure 5
at a height (variable) at which the packing fraction is 5%. Dashed line, height (in diameters
divided by 10) corresponding to the values of the Mach number shown.

8 indicates that the quantitative difference in the rescaled internal energy profiles
is small. The density profiles show that the maximum packing fraction of the MD
averaged field is also very similar to the HD result, about 0.75. This agreement
justifies the use of νc = 0.82 in our hydrodynamic computations, rather than the
hexagonal packing fraction 0.92 as the critical density, as said previously. However,
the hydrodynamic profiles show a sharper shock wave than their corresponding MD
counterparts. This is related to the residual heating observed in MD simulations at
heights at which the granular layer is sufficiently dilute (very visible for example in
figure 8f). A movie of the complete sequences is available with the online version of the
paper (movie 4). The maximum values of the temperature do not differ significantly,
whereas the MD profiles appear to be systematically thicker. This phenomenon might
be partly due to the mesoscopic averaging procedure used here. It is known, on the
other hand, that hydrodynamic variables can be scale dependent in granular systems
(Goldhirsch 2001) owing to the lack of scale separation. So even if the number of
samples (cycles) could in principle be increased, and therefore the mean fields better
defined, the local noise would persist at scales of the order of one particle (which is
the grid size used here for averaging the MD sequences), particularly in dilute regions.
The number of samples is practically limited by the fact that the MD pattern is not
strictly stationary for very long. It is not desirable either to increase the grid size for
averaging, for obvious reasons: here, where the pattern is of the size of a few grains,
the fields obtained from MD simulations would lose structure and definition. On the
other hand, the granular Navier–Stokes equations (2.7) do not account for such a
source of fluctuations. The effect of varying the grid size on the hydrodynamic fields
extracted from MD simulations is shown in figure 7. There we plot the maximum of
the packing fraction and the rescaled thermal energy obtained from the sequence of
profiles, as a function of the vertical grid size for averaging (the horizontal grid size
is kept constant). In the vertical direction, the profiles are expected to be sharper,
so a loss of information could occur due to an inadequate averaging procedure.
The sequences analysed consist of 100 frames over two oscillation periods, and the
granular motion is sufficiently time resolved for our purposes. An average over
locations occupied by cusps/valleys has been also applied along the entire system.
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Figure 7. The maximum packing fraction (squares) and rescaled thermal energy (circles)
obtained from averaging the MD sequences for different vertical grid sizes (the horizontal grid
size is kept constant).

Figure 7 shows several regions. At grid sizes of the order of one particle diameter, the
averages produce stable results. For sizes below one particle diameter, the maximum
values for the density and thermal energy vary quickly. In this latter range of grid
sizes, we would require a larger number of periods in order to extract reliable results
for the mean fields. For grid sizes larger than one, the maximum packing fraction
decreases and the thermal energy increases. Thus, grid sizes of about one particle
diameter are shown to render the most reasonable results. As a conclusion: under the
limitations discussed, good quantitative agreement can be achieved with mesoscopic
statistics: a manageable number of samples (25) and a one-diameter characteristic
cell size, along with a final average of means over corresponding locations.

There is still another difference between the MD and HD profiles: the gap formed
when the granular layer takes off (figure 2c, g). In MD simulations, when the wall
moves downward, the entire layer levitates, as we can see in the corresponding frames
in figure 8 by noting that the density at zero height is exactly zero. However, in HD
simulations, the density at the bottom is never very close to zero. It is particularly large
at the base of the cusps, (figure 5c), where the packing fraction is 0.19. Seemingly, the
hydrodynamic layer is stickier, or behaves more inelastically, than the MD granular
bed. In addition, in hydrodynamic simulations, the fact that there is some material
stuck to the bottom during take off anticipates the impact with the wall and the
corresponding generation of the shock wave. This is the source of the mismatch
between the landing times, to which figure 2 refers. The shock is anticipated in
HD simulations because there is no empty space between the granular material and
the plate. Instead, in MD simulations, the plate travels through the gap without
encountering any material to collide with. The anticipation of the shock wave in the
HD simulation can be clearly seen when the online movies for the thermal energy
are compared: the maximum of the energy peak occurs a few frames before (exactly
1/10 of the oscillating period) in the HD sequence. Afterwards the MD sequence
catches up until the next impact with the plate. As said above, the absence of gap
in the HD simulation is probably due to the inadequacy of the boundary conditions
used (impenetrable, adiabatic plate). It is worth mentioning that Bougie et al. (2002)
see a substantial gap when solving the HD equations for a homogeneous granular
bed in three dimensions and with a larger restitution coefficient e = 0.9 and larger
amplitude Γ = 3. This larger gap is due to the different choice of parameters and it
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Figure 8. Molecular dynamics simulation: a two-period sequence of the vertical profiles of the
packing fraction ν (solid line) and the rescaled internal energy νT /σg (dashed) as a function
of height, in diameters, for the same times as the snapshots in figure 2 (right-hand side).

does not change the main conclusion on the drawbacks of the boundary conditions
for the HD simulation. Our simulations too, render a bigger gap size and smaller
packing fraction at the bottom plate (� 0.04) for flat states at Γ = 3 and for e = 0.9.
However, when the restitution coefficient is lowered to e = 0.75, keeping the rest of
the parameters constant, the gap is reduced and the minimal packing fraction at the
bottom increases again up to � 0.20.

It is worth analysing the velocity field and the convection pattern which accompanies
the Faraday waves. These are shown in values that are relative to the velocity of
the plate in figures 9 and 10 for hydrodynamic and MD simulations, respectively,
and in movie 5 available with the online version of the paper. In fact what is
shown is the linear momentum field rather than the velocity, in order to focus on
the most important part of the system and remove from the picture the almost
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Figure 9. Hydrodynamic simulation: the linear momentum plotted over the density field in
grey shades. The frames are taken at the same times as in figure 2 (left-hand side) and cover
two cycles of the driving oscillation. A movie is available with the online version of the paper
(movie 5).
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Figure 10. Molecular dynamics simulation: the linear momentum plotted over the density
field in grey shades. The frames are taken at the same times as in figure 2 (right-hand side)
and cover two cycles of the driving oscillation.
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empty regions, in which the MD averages are too noisy. Comparing both panels we
again see the effect that was pointed out above: in hydrodynamic simulations, the
material is always in contact with the vibrating plate. This has been observed before
in hydrodynamic simulations of vibrated granular layers without pattern formation
(M. Shattuck personal communication). In figures 9 and 10 we observe that material
is removed from the dense regions and taken towards the loose regions after each
impact on the wall, during the alternate formation of cusps. The scaling factor for the
arrows is identical for both figures and again reveals good quantitative agreement of
HD and MD simulations. In HD, the linear momentum values are about 20% lower
than in the MD simulations: the maximum value for the linear momentum was 1.17
in I.S. units for the MD sequence and 0.935 for the HD simulation. Note that simple
reflecting boundaries are used at the plate for the hydrodynamic simulations, and
that particles are perfectly smooth in MD simulations. It is difficult to evaluate the
effect of the choice of boundary conditions on the dynamics in more complex set-ups,
but in view of the results, it seems clear that this undisturbed sliding along the plate
looks like the only reasonable choice in this very simple situation.

6. Conclusions
So far we have compared the results given by the two simulation methods

considered: the traditional approach by event-driven MD and the hydrodynamic
approach by means of a CFD code.

6.1. Numerical aspects

It is worth comparing the efficiency of the two methods in general. In the first
place, CFD codes are computationally expensive. On the other hand, the scale of the
gradients is one particle diameter: effectively, the cell size cannot be greater than a
few particles. At Mach numbers of about 10 in some phases of the motion, inertia is
the most prominent mechanism of transport. Diffusion operates at very small length
scales, and is of less importance than inertia, but plays a role in other phases of the
motion, when the typical Mach number drops below 1 in the dense phase, and cannot
just be neglected. In addition, explicit time schemes like the one used in this paper
introduce a stability condition which becomes more restrictive as the diffusion length
scales (the size of the particles) become smaller. The result is that for submillimetric
particles, most commonly used in real experiments, the same problem treated here
becomes very stiff and thus, we should resort to an implicit treatment of the viscous
and/or cooling terms.

In any case, length scales that are typically one particle in size must be resolved,
and the ratio one cell ≈ one particle is extremely unfavourable to computational
hydrodynamics in terms of efficiency. Moreover, high-resolution shock-capturing
schemes like WENO add an extra cost to the computation which often takes the
largest amount of the total CPU time. There is some room for optimization though.
Such extraordinary effort need not be made to construct highly accurate numerical
fluxes everywhere and all the time, so simulation time could be reduced in this way.

6.2. Physical aspects

We have shown that both qualitatively and quantitatively, finely tuned state-of-the-art
hydrodynamic codes can reproduce the features of particle simulations in complex
flow problems dealing with transient strong shock waves and pattern formation,
such as the Faraday instability investigated here. In particular, the appearance and
wavelength of the pattern have been reproduced with a very good approximation
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as seen from the bifurcation diagram (figure 3). The hydrodynamic fields compare
very well to the corresponding averaged particle fields. However, further investigation
should be carried out to improve the boundary conditions so that the gap between
the plate and the granulate during cusps is larger. The hydrodynamic temperature is
shown to agree with its MD counterpart to which ensemble averaging at a typical
grid size of one particle diameter has been applied. Finally, the velocity field obtained
in hydrodynamic simulations follows the same structure as the particle velocity field,
even though it gives somewhat smaller values. The discrepancies found throughout
the analysis are of the order of 20%.

Finally, we should ask why the agreement between molecular dynamics and
hydrodynamics is so good here, so robust, when everything suggests that it should
not be. At high densities collisions are not binary, fluxes are thus non-local and
the expressions for the kinetic coefficients should no longer apply, not to mention
the degree of inelasticity (the restitution is only e = 0.75) which invalidates the
assumption of small gradients on which all kinetic theory expansions are based.
It seems that there is only one reason for the agreement: the dynamics is mostly
Eulerian and such details as constitutive relations and transport coefficients are not
definitive. So much so that, in practice, if the shock wave is modelled accurately and
a suitable equation of state is introduced, the instability can be ‘easily’ reproduced, as
in molecular dynamics, with the essential contribution of inelasticity. Unfortunately,
we cannot simulate Eulerian granular flow with the present implementation of the
code without the diffusive terms in the Navier–Stokes equations. If we neglect them
completely, the stability of the code is compromised.

We found several hints in support of this statement. The first one is the evolution
of the Mach number (figure 6), showing that the flow is supersonic during large
portions of the two-cycle periodic motion. The second is the result (not presented
here) obtained from two types of simulation which approach the Euler limit: (i) by
multiplying all kinetic coefficients by a factor of 0.2; and (ii) by switching off selectively
all diffusion terms but one. In both tests, we obtained the same wavelengths as in the
case of the full Navier–Stokes equations.
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Foundation for Scientific Research and Development. C.S. is grateful for the support
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Appendix. Formulae for local variables
Here, we summarize the formulae for the explicit eigenvalues and eigenvectors of

the Jacobian matrix of the Euler part of (3.1) in two dimensions, for general equations
of state depending on the density and the enthalpy. As discussed in § 3, the system
(3.1) can be rewritten as

∂u

∂t
+

∂

∂x1

f(u) +
∂

∂x2

g(u) = S(u), (A1)

with obvious definitions for f(u), g(u) and S(u) and with the vector u = (u1, u2, u3, u4)
whose components are given by

u1 = ρ, u2 = ρU1, u3 = ρU2

u4 = ρε + 1
2
ρ |U|2 = ρε + 1

2
ρ

(
U 2

1 + U 2
2

)
.

}
(A2)
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The components of f are

f1 (u) = u2, f2 (u) = p +
u2

2

u1

,

f3 (u) =
u2u3

u1

, f4 (u) =
u2

u1

(p + u4) ,

⎫⎪⎬
⎪⎭ (A3)

where the pressure is assumed to be a function of density and enthalpy,

p = p (ρ, ε) = p

(
u1,

u3

u1

− 1

2

u2
2

u2
1

)
. (A4)

Remember that the sound speed is given by (3.5). Given the auxiliary function H =
(p + u4)/u1, the eigenvalues of the Jacobian matrix f ′(u) are given by

Λ− =
u2

u1

− cs, Λ2 = Λ3 =
u2

u1

, Λ+ =
u2

u1

+ cs, (A5)

and their corresponding right and left eigenvectors are

r± =

⎛
⎜⎜⎜⎝

1

u2/u1 ± cs

u3/u1

H ± (u2/u1)cs

⎞
⎟⎟⎟⎠ , r2 =

⎛
⎜⎜⎜⎝

1

u2/u1

u3/u1

H − 1/b1

⎞
⎟⎟⎟⎠ , r3 =

⎛
⎜⎜⎜⎝

0

0

1

u3/u1

⎞
⎟⎟⎟⎠ , (A6)

and

l± =

⎛
⎜⎜⎜⎝

1
2

∓ u2

u1

1
2cs

+ b1

2

(
u2

2+u2
3

u2
1

− H
)

− b1

2
u2

u1
± 1

2cs

− b1

2
u3

u1

b1

2

⎞
⎟⎟⎟⎠ , l2 =

⎛
⎜⎜⎜⎝

[
H − u2

2

u2
1

− u2
3

u2
1

]
b1

u2

u1
b1

u3

u1
b1

−b1

⎞
⎟⎟⎟⎠ , l3 =

⎛
⎜⎜⎜⎝

− u3

u1

0

1

0

⎞
⎟⎟⎟⎠ ,

(A7)
respectively, where b1 = pε/ρc2

s . For the fluxes associated with the x2-derivative, that
is,

g1 (u) = u3, g2 (u) =
u2u3

u1

, (A8a, b)

g3 (u) = p +
u2

3

u1

, g4 (u) =
u3

u1

(p + u4) ; (A8c, d)

we only need swap indices 2 and 3 in all formulae above, and the second and third
components in all right and left eigenvectors.
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