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Fig. 1 – Snapshot of a Lattice-Boltzmann 
simulation of particle melting in additive 
manufacturing due to a moving electron 
beam (courtesy: Andreas Bauereiß, 
WTM, Uni Erlangen-Nürnberg). 
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Introduction – We develop a numerical tool for modeling the transport 
mechanism of powder particles during additive manufacturing1. In this 
type of manufacturing process, objects are created by selectively 
melting particles of a powder bed through a laser or electron beam 
(Fig. 1). Understanding the mechanical behavior of the powder as a 
function of material properties, size distribution and particle shape is 
essential for the optimization of the production process. We adapt a 
software (LIGGGHTS2) for particle-based simulations using the 
Discrete Element Method (DEM) in order to account for the complex 
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geometries of the powder particles, as well as for the dynamic 
boundary conditions for the granular material which are inherent to 
the manufacturing process.  

Particle model – Powder particles of complex shapes are modeled as 
sphere clumps (rigid bodies) using the multisphere method2,3. 
Constituent spheres of a rigid body interact with spheres belonging to 
neighbouring particles through viscoelastic forces according to the 
Hertz-Mindlin model2-4. Indeed, one problem with the multisphere 
method is that the mass and moment of inertia of the resulting sphere 
clumps are incorrectly computed as a result of the (artifactual) 
contribution of the sphere-sphere overlaps (Fig. 2). Here we present 
an analytical (exact) method to compute the mass and moment of 
inertia of rigid bodies in DEM using the multisphere method. 

Fig. 2 – Schematic diagram of two 
spheres (density ρp, center-of-mass 
positions r1, r2) within a rigid body. 

The contribution of the overlap to the 
total particle mass and moment of 
inertia is computed for all pairs of 
constituent spheres (labeled k = 1, 2) 
for which |D| < R1 + R2, where D = r1-
r2 (Fig. 2). The mass of each cap is 
computed through the equation, 
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where k = Rk – tk. Considering that 
D is parallel to the z axis (Fig. 2), the 
inertia tensor Îcap k of each cap is 
diagonal, with components: 
  

where Lcentr k is the geometric centroid of cap k (computed relative to 
the center of sphere k) and Loverlap k is the distance between the center 
of sphere k and the center of mass of the overlap volume. The inertia 
tensor Îoverlap for the case where D makes an angle ϕ with ez reads, 

Îoverlap = R̂ Îcap 1 + Îcap 2( ) R̂−1,
where    is the rotation matrix associated with the rotation of a vector 
by an angle ϕ  around the axis eD × ez, with eD = D/|D|. The mass and 
center-of-mass position of the rigid body are then computed using the 
equations, 

The body’s inertia tensor reads, 
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where ak =  1 for spheres 
and ak = -1 for overlap 
volumes, and Xk, Yk, Zk are 
the distances from the 
particle’s principal axes. 

The inertia tensor is diagonalized through a principal axis 
transformation, the orthogonal transformation matrix of which (Ĵ) is 
used to transform a vector u in the body’s fixed frame to the inertial 
frame through the equation, uin = Ĵu. Finally, the motion of the rigid 
body is computed by numerically solving the following equations2,  

where rcm is the position 
of the body’s center of 
mass.  

where g is gravity, Fi is the total force 
on the body’s i-th constituent sphere 
and M is the total torque on the body, 
while      is the body’s angular velocity. 

Modeling the transport mechanism of the particles during the 
manufacturing process – The boundary conditions associated with 
the device’s complex geometry are modeled by importing triangular 
meshes, which are interpreted as frictional walls. 

The device consists of a rake 
for powder application (which 
moves from left to right in Fig. 
3) and a building tank (central 
area), which is filled with a 
powder layer and is on top of a 
vertically adjustable platform. 
Our simulations provide a 
helpful tool for investigating the 
role of particle shape and size 
distribution for the flowability of 
the powder within the geometric 
device.  

Fig. 3 – Snapshots of a simulation of 
particles with complex geometric shapes, 
built with the multisphere method, in 
dynamic boundary conditions which mimic 
the device used in additive manufacturing. 
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