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The dynamics of dissipative soft-sphere gases obeys Newton’s equation of motion which are commonly solved numerically by (force-based) Molecular Dynamics schemes. With
the assumption of instantaneous, pairwise collisions, the simulation can be accelerated considerably using event-driven Molecular Dynamics, where the coefficient of restitution is
derived from the interaction force between particles. Recently it was shown [1], however, that this approach may fail dramatically, that is, the obtained trajectories deviate
significantly from the ones predicted by Newton’s equations. In this paper, we generalize the concept of the coefficient of restitution and derive a numerical scheme which allows us
to perform highly efficient event-driven Molecular Dynamics simulations even for non-instantaneous collisions. We show that the particle trajectories predicted by the new scheme
agree perfectly with the corresponding (force-based) Molecular Dynamics, except for a short transient period whose duration corresponds to the duration of the contact. Thus, the
new algorithm solves Newton’s equations of motion like force-based MD while preserving the advantages of event-driven simulations.

Hard Spheres Soft Spheres Hard Spheres vs. Soft Spheres
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Relevance: Relevance: The hard sphere model is a
The hard sphere model is the foundation of both: Kinetic theory of granular matter In nature collisions are characterized by finite interaction forces simplification which is commonly
based on the Boltzmann equation as well as event-driven Molecular Dynamics (soft spheres). Soft sphere modeling is the bedrock of (force- assumgd to hold tru_e for systems _VVhOSG 0.1
(eMD) of granular matter. based) Molecular Dynamics. dynamics are constituted by a series of
. . binary interactions (dilute systems). —~
Assumptions: Assumptions: = .
. mﬂmtg, delta-shaped |r;|t_eract|on forces * finite |fr_1t(_eract|on fordces | Recently it was shown, that even under *;
— mstantageous co I_SIOI’]S. f — finite cogtact _uratlon. i this precondition the hard sphere model
; systerrlll_ ynamics = sequence o ; s;;ste,m yna}:_mlcs gfove:pe y may fail dramatically if compared to ol
inary collisions ewton’s equations of motion. more physical soft sphere models.
Collision Rule; - Collision Rule Actually, collisions are governed by finite 1
The collision of two hard spheres iand j located at 7; ; traveling at velocities 7; ; is » Solve Newton’s (coupled) equations of motion for the many . Y : g y 0.2 0
described by an instantaneous exchange of momentu;n' | body system: interaction forces in nature. Hence, the
y J ' ' ) ~ soft sphere model is the benchmark by X (m)
(7:—.*'! . 7:*!) . éf — —E(FO FO) é 0 m@ﬁ — FZ Wh|Ch the hard Sphere approxima‘tion Tl’aceS Of two C0”|d|ng Spheres. BlaCk:
2 J r J r has to be justified. Soft spheres. Red: corresponding hard
Where ¢, denotes the inter center unit vector and ¢ the coefficient of normal Where F};, comprising interaction forces and external forces, spheres. Symbols indicate the particle
restitution. Primes indicate post- and zeros precollisional values. Note that we have denotes the force acting on particle i . positions at equidistant points in time ,
¢/ = ¢V due to instantaneous collisions and, hence, the system dynamics
Mapping Soft Sphere Collisions to Instantaneous
Equation of Motion for Soft Spheres Collision Mapping Collision Rule
Té, || L The collision terminates at ¢ = 7, where To apply the collision mapping in eMD simulations, a collision rule is needed, which, for a given set of material parameters,
L/ 0 o= particle radii as well as a given ¢ directly relates the precollisional coordinates 7 and 7, to the corresponding
The collision oftwio | €y T(T) > U, n — V- postcollisional ones r;” and /. We consider two coordinate systems: ¥ as described left and the laboratory system Xt.
smooth spheres - } g P Solving the equation of motion till t =7, we obtain X indicates that the vector X is expressed in .
tallkes place in a g E gc;](T), o(7), fr(;) and #(7), r\]/vh|chdfuIflyhdeterlrune Position update: Velocity update:
plane. J ;[Ni Zfﬁtre]g‘ configuration at the end of the collision. The postcollisional inter-center unit vector reads The postcollisional angular velocity reads
. § : . . _ ! - 0
r—» | e, = (cos(e,®),sin(e,P),0) expressedin T and P =Ep P
— 7 L= — 5/ The derivative of postcollisional inter-center unit vector reads
6’]"_?72-0) 87"_?{:07 8(‘0—907 ;. At~ L At~ L At~ . L . L . .
Within the collision dp _ ¢y, . _ T L ey = f’; R €r = (€7~€a; y €€y s €€ ) expressed in X" . el = (—p Sln(gcp(I))’ (D COS(ggo(I))a 0) inX and
plane we formulate di — 72 Y OX? meg Z The postcollisional distance between the spheres reads o! — (é 1oL g1l 515 L) in YL
: ] y y
the equation of 2 with r 7 7y Tz
.. 2~ - = 2 I _— .0
motion in polar dr __ 7 (dc,o) (I)2 By T [0\ = 0 0 0 o0 r e, The postcollisional normal relative velocity reads
. <2 — 7 " L . 0
coordinates. dt? dt Metf X 70 [0 & 0 00 The vectors pointing from the origin of ¥ to the spheres read ' =7"¢p
x0)=1] @ £ = 8 8 % 50 8 , . o The postcollisional particle velocities with respect to the
- ¢ =2 2 =/ mq /! .
\ 9; ) o0 o0 o = AT et N ATy = mama T Er origin of & rea(iln2 o o
Where time is F=L t=41 =2 i - the postcollisional position of the origin of ¥ is given by ATy = M1+ (r'e. +r'e;)
measured in units of X Ty ¥ ) The complete polhsmn dynamics are exactly . A . L, .
T', length in units of Fn normal component of interaction force mapped to an instantaneous event by: R" — ﬁO + ﬁO e, T UQ T mi4mo (T e +T ev‘")
X and angles in . mymy _ - i - it and the postcollisional particle velocities are given by
nits of ®. Meff = —p—— effective Mass X(’T) _ Ex(O) and the postcollisional parﬂcle p03|t_|)ons read j g )
=R’ + A7 0/ =R’ + A¥/
Efficient Lookup Tables for the Collision Mapping Simulation Algorithm
To apply the above collision rule for highly efficient soft sphere eMD, efficient lookup tables for the ldea:
collision mapping € are needed. Here we show how these may be obtained for two widely used
interaction forces: The linear dashpot model and viscoelastic spheres. In booth cases we reduce the 1. Compute the collision mapping ¢ . Using lookup tables this may be done in a
problem to three free parameters. convenient and efficient way.
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2. By applying the above collision rule with ¢, = 0 we rotate the two particles around

Linear Dashpot Model their center of mass by the angle ¢ = ¢, ®, and compute their postcollisional
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n — k(l — 7“) — T [ = Ry + Ro, k spring constant and the dissipative parameter ~ . velocities 7 5 .

Scalinaby =1 T=21 X = 70 W — btai 1 : 3. Thenthe partlcle velocities are set to the center of mass velocity: v7 2 = - RO
gby Y T ow’ Tow — \ me WEODIAIN ’ | ] 4. Attimet=1t"+ 7 (7 =¢/T) we schedule an event setting the partlcle velocities to
do _ Co 3 - ) the above postcollisional values v/ , .
dt 72 : | ﬂ ,
d°F _ S _ & . dr s — T ; — 0 Exceptions:
12 7 + (l 7“) Cdis a4 where | [ = % and Cdis = ’Ymeff 3 m E
’ — * 1. The rotation step (step 2) leads to overlapping particles.
0 | — — perform a regular hard sphere collision with ¢ = —¢;.
12 | | | 1jo-16 : " z 2. While the particles artificially propagate with center of mass velocity (step 3) they
ol |jo-14 ) " : might collide with surrounding particles.
H0.12 1 i RS — directly set the velocity of the afffected particle ¢ to the above value v; and
0 e I} u_- . . .
8 110.1 : s s 15 perform a collision according to the above algorithm.
unit min. max. ~ 1Ho.08 j i
. = e 2 ' 0.2
R m] 0.001 0.1 4r In i/ imin | 0.04 B 2 a 6 2 4 5 0
m |kg/m?3 2 2 . o . i
P : 8/m-] ° 320 i 180.02 Components of the collision mapping € for the linear
v kg/s] 0.01 1.25 In{ = dashoot model. F . In e (white label
. m /s] 0.001 25 0 TR - ashpot mo 'e. or var|o~u§ ‘ncdls (white labels). x- 0.1
d/l - 0.01 0.99 i Inc, axis Inc, /c'", y-axis Inl /1™,
~
Viscoelastic Spheres c - c c é 0
3 . . _ 2Y VR, T T t
Ey = pa(l — 7“)3/2 — §Ape17°vl — 7T with el = 3(1_,,23f where I v L T e e >
Y ,v,Aand Reg = R1R2/(R1 + Re) denote the Young modulus, the Poisson ratio the “
d|SS|pat|ve parameter and the effective mass respectlvely : -0.1
Scalingby ® =1, T = 1 -, X = (= T2)5 k = —£— we obtain *
k 5 ( 7 0) 5 L5 Meff 6
dg _ cp 2
dt 72
2 B
d’7 _ Sy _ A3 d7 . /7 _ = _ 3A ﬁ
d-EQ ’F’ —|_ (l T) Cdls d‘E l T Where CdlS — 2T 1 X (m)

In contrast to linear dashpot model, we here have cqis = cais(, c,) . Similar to

Scetch of the simulation algorithm. Traces of two colliding spheres.
¢, and | we switch to In cais/c™ to fully rectify the parameter space.

Black: Soft sphere benchmark. Green: corresponding collision as
resolved by the above algorithm. Symbols indicate the particle positions
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unit min. max. . at equidistant points in time , and, hence, the system dynamics.
Y [10° N/m?] 0.01 100 | 25
v - 0.2 0.5 j By
R :rkn]/ 5 350001 2-2150 : : We present an algorithm, which at least for dilute systems,
oo :]g m AT L - o exactly maps the collision dynamics to two instantaneous
S Ve : Components of the collision mapping € for : . . :
v [m/s] 0.001 25 viscoelastic spheres for various events. It thus allows for the highly efficient event-driven
A 0ol 0.9 In cais/ In " (white labels). x-axis In ¢, /e, y- simulation of granular systems of soft spheres. All impact detalls
axis lnl/I™™. are mapped to four scalar numbers only depending on three
References: free parameters. These numbers may be precomputed and
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