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a b s t r a c t

Some dynamical properties for a bouncing ball model are studied. We show that when
dissipation is introduced the structure of the phase space is changed and attractors appear.
Increasing the amount of dissipation, the edges of the basins of attraction of an attracting
fixed point touch the chaotic attractor. Consequently the chaotic attractor and its basin of
attraction are destroyed given place to a transient described by a power lawwith exponent
−2. The parameter-space is also studied and we show that it presents a rich structure with
infinite self-similar structures of shrimp-shape.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The origin of the high energy cosmic rays has intrigued the scientists during the first half of the 20th century. However,
in 1949, Enrico Fermi [1], in his pioneering paper On the origin of cosmic radiation, proposed that a charged particle could
be accelerated by iterations with time-dependent magnetic structures. Since then many different models were proposed in
classical [2–9] and in quantum domains [10–14].

One of themodels that has been considered very often in the literature is the Fermi–Ulammodel (FUM), sometimes called
as bouncing ball model. The system consists of a classical particle (denoting the cosmic ray) confined inside and bouncing
between two rigid walls: one of them is moving periodically in time (corresponding to themovingmagnetic field) while the
other is fixed (returning mechanism of the particle towards a further collision with the moving wall). Despite the simplicity
of the model, the non-dissipative dynamics of the problem has a very rich and complex phase space. Therefore depending
on both the control parameters and initial conditions, regular regions such as invariant spanning curves (also known in
theory of nonlinear dynamics as invariant tori) and Kolmogorov–Arnold–Moser (KAM) islands are observed coexisting with
chaotic seas. Contrary to what would be expected by the collisions with the moving wall, Lichtenberg and Lieberman [15]
showed that the existence of a set of invariant tori in the phase space prevent the particle to accumulate unlimited energy.
However, searching for conditions to produce the unlimited energy growth of the bouncing particle, Leonel and Silva [16]
in 2008 proposed a specific type of external perturbation of the wall that, depending on the range of control parameters,
the growth in the particle’s energy was observed. Indeed they considered that the moving wall is connected to a crank by a
rod. Therefore for such a system, there are two nonlinearities in the dynamics playing important roles in the velocity of the
particle. When the length of the crank approaches the limit of the length of the rod, the motion of the moving wall becomes
very fast for certain phases leading the velocity of the wall to become discontinuous for such phases leading to large jumps
in the particle velocity and hence to unlimited energy growth. Before such a limit however, the phase space experiences
abrupt destruction of invariant tori due to parameter changes leading to merging and overlaps of different chaotic seas.
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Fig. 1. Illustration of the model.

In this paperwe revisit the problem proposed in Ref. [16] seeking to understand and describe some dissipative properties
of the dynamics. Thus the model consists of a classical particle confined between two rigid walls. One wall is fixed and the
other onemoves periodically in time.We assume that the particle experiences inelastic collisions with both walls leading to
a fractional loss of energy upon collision. For the fixed wall, we introduce a coefficient α ∈ [0, 1] while for the periodically
varying wall we consider β ∈ [0, 1]. The limit α = β = 1 recovers the results for the non dissipative case. We describe
the dynamics via a two dimensional non-linear area-contracting map with four effective control parameters namely: two
dissipation parameters and two parameters controlling the nonlinearity of the system. We show that the introduction of
dissipation destroys the mixed structure of the phase space. A direct conclusion is that elliptical fixed points turn into sinks
and the chaotic sea can be replaced by a chaotic attractor [17]. Each of these structures have their own basin of attraction.
When the amount of the dissipation is increased, the edges between the basin of attraction of the attracting fixed point and
of the basin of attraction of the chaotic attractor1 touch the unstable manifold2 and as a result the chaotic attractor as well
as its basin of attraction are suddenly destroyed. Such an event is called boundary crisis [17–19]. After the destruction, the
chaotic attractor is replaced by a transient which is characterized by a power law where the independent coordinate is the
relative distance, in the control parameter, where the crisis takes place.

Dissipative systems have attracted much attention during the last decades, not only in order to characterize boundary
crisis but also because they can be applied in turbulent dynamics [20], molecular physics [21] and many other fields.
In the field of Fermi acceleration (FA), it has been shown that the introduction of dissipation works as a mechanism
for the suppression of the unlimited energy growth [22–26]. Attention also has been devoted to the parameter space of
the dissipative systems. In particular much interest is applied in order to investigate the existence of structures called
shrimps [27], as reported by Gallas in Ref. [27] in 1993. Since then and considering the advances of fast computers,
the parameter-space of dissipative models has received special attention and extensive works have been done not only
in theoretical models [28–34] (and references therein) but also very recently the existence of shrimp-shaped domains
experimentally involving a circuit of the Nishio–Inaba family [35] has been shown. Here, we have used Lyapunov exponents
to classify regions in the parameter-space as regular (null or negative Lyapunov exponent) or chaotic behavior (positive
Lyapunov exponent). The procedure we have adopted is: starting with a fixed initial condition, for each increment in the
parameters we follow the attractor. This means that we use the last value obtained for the dynamical variables before the
increment, as the new initial condition after the increment and we show that the parameter space exhibits a shrimp shade
structure which corresponds to the periodic attractors embedded in a chaotic region.

The present paper is organized as follows. In Section 2we describe all the necessary details to obtain the two-dimensional
mapping that describes the dynamics of the system. Moreover, our numerical results for the boundary crisis and shrimp-
shape structures are shown along the section. Finally, conclusions are drawn in Section 4.

2. A dissipative Fermi–Ulammodel with two nonlinearities

In this section we revisit the model introduced by Leonel and Silva in 2008 [16], however, here, the dissipative dynamics
is taken into account. We begin describing the problem and the steps necessary to construct the mapping. The model
consists of a classical particle confined between two rigid walls. One of them is considered to be fixed at x = l while
the other one is connected in a crank by a rod with length L and it moves periodically in time according to xw(t) =
R cos(ωt)+

√
L2 − R2 sin2(ωt)−L, constructed from the center of the circle, where R is the radius of the crank (the amplitude

of oscillation) and ω is the frequency as one can see in Fig. 1. The particle is in the complete absence of any external field.
We assume that collisions with both walls are inelastic. Thus, the restitution coefficient β ∈ [0, 1) is introduced when the
particle hits the periodically time varying wall. On the other hand, in collisions with the fixed wall, the coefficient α ∈ [0, 1)
is assumed. We take into account values for both α and β inside the interval (0, 1). The dynamics of the system is described
in terms of a two dimensional non-linear area-contracting map for the variables velocity and time. Thus, it is convenient
to define some dimensionless variables. The time is measured in terms of the number of oscillations of the moving wall,

1 The edges correspond indeed to the stable and unstable manifolds of a saddle fixed point. They are obtained by using the inverse of the map.
2 Chaotic attractor.
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consequently φn = ωtn. A dimensionless velocity is given by Vn = vn/(ωl), ε = R/l and r = R/L. Thus, the two-dimensional
map T (Vn, φn) = (Vn+1, φn+1) that describes the dynamics of the system is given by

T :





Vn+1 = V ∗

n − (1 + β)ε sin(φn+1)

[

1 + r cos(φn+1)√
1 − r2 sin2(φn+1)

]

φn+1 = [φn + ∆Tn]mod (2π)

, (1)

where the corresponding expressions for both V ∗
n and ∆Tn depend on what kind of collision occurs, namely: (i) successive

collisions and; (ii) non-successive collisions. The successive collisions happen when the particle enters the collision zone,
x ∈ [−ε, ε], experiences a collision with the moving wall, and before it leaves the collision zone, it experiences a second,
and therefore successive collision. Additionally, depending on the combination of both, velocity and phase, many collisions
may happen before the particle leaves the collision zone. In case (i), the corresponding expressions for both V ∗

n and ∆Tn are
given by V ∗

n = −βVn and ∆Tn = φc . The numerical value of φc is obtained as the first solution of the equation G(φc) = 0
with φc ∈ (0, 2π ]. Where the function G(φc) is obtained by the condition that the position of the particles is the same as
that of the wall. Thus, G(φc) is then written as

G(φc) = ε cos(φn + φc) + ε

r

√
1 − r2 sin2(φn + φc) − ε cos(φn) − ε

r

√
1 − r2 sin2(φn) − Vnφc . (2)

If the function G(φc) does not have a solution in the interval φc ∈ (0, 2π ], one must conclude that the particle leaves the
collision zone without experiencing a successive collision. It is easy to show that the determinant of the Jacobian matrix for
the mapping which describes the case of successive collisions is given by

det(J) = β2





Vn + ε sin(φn)

(
1 + r cos(φn)√

1−r2 sin2(φn)

)

Vn+1 + ε sin(φn+1)

(
1 + r cos(φn+1)√

1−r2 sin2(φn+1)

)



 . (3)

Considering now the case of non-successive collisions, the expressions for both V ∗ and ∆T are V ∗
n = βαVn and ∆Tn =

φr + φl + φc , where the auxiliary terms are written as

φr = r[1 − ε cos(φn)] − ε
√
1 − r2 sin2(φn) − ε

rVn
, φl = 1 − ε

αVn
. (4)

Here φr denotes the time that the particle spends traveling to the right hand side until it hits the fixed wall. The particle
thus experiences an inelastic collision and is reflected backwards with velocity −αVn. Then, the term φl denotes the time
that the particle spends until entering again the collision zone. Finally, φc is numerically obtained as the smallest solution
of the equation F(φc) = 0 with F(φc) given by

F(φc) = ε cos(φn + φr + φl + φc) + ε

r

√
1 − r2 sin2(φn + φr + φl + φc) + ε

r
(1 + r) + αVnφc . (5)

After some algebra, one can show that the determinant of the Jacobian matrix for the case of non-successive collisions is
given by

det(J) = α2β2





Vn + ε sin(φn)

(
1 + r cos(φn)√

1−r2 sin2(φn)

)

Vn+1 + ε sin(φn+1)

(
1 + r cos(φn+1)√

1−r2 sin2(φn+1)

)



 . (6)

It is clear that the above result implies that the model is measure preserving only for the case of both α = β = 1.
In order to describe occurrence of homoclinic orbits, wemust firstly know exactly the location of the saddle fixed points.

Thus, in order to obtain the position of the fixed points we have to solve the equations Vn+1 = Vn and φn+1 = φn + 2mπ .
The solutions of these equations give us that the saddle fixed points are written as

V =
[

1 + β

βα − 1

]
ε sin(φ)

[

1 + r cos(φ)
√
1 − r2 sin2(φ)

]

, (7)

h(φ) = 1 − γ sin(φ)

[

1 + r cos(φ)
√
1 − r2 sin2(φ)

]

− ε cos(φ) − ε

r

√
1 − r2 sin2(φ), (8)

where φ is obtained numerically by solving h(φ) = 0 by using Newton’s method. The auxiliary term γ is defined as

γ = 2εαmπ

α + 1

[
1 + β

βα − 1

]
, (9)

andm = 1, 2, 3, . . ..
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Fig. 2. Characterization of a boundary crisis for m = 2. The control parameters used were ε = 0.02, r = 0.5, β = 0.98 and: (a) α = 0.91 (immediately
before the crisis); (b) α = 0.915 (immediately after the crisis).

It is well known that a saddle fixed point (represented by a star in Fig. 2) has both stable and unstable manifolds. The
unstablemanifolds are obtained by trajectories heading directly to the attracting fixed points (upper branch) or approaching
the chaotic attractor (lower branch) (see Fig. 2). They are obtained just via the iteration of themapping T with the appropriate
initial conditions. On the other hand, the stable manifolds consist basically of the boundary between the basin of attraction
of the attracting fixed point and the basin of attraction of the chaotic attractor. The construction of the stable manifolds
are slightly more complicated than the unstable manifolds, since we have to obtain the inverse of the mapping T . The basic
procedure is that T−1(Vn+1, φn+1) = (Vn, φn), thus the expression of the velocity is given by

Vn = 1
βα

[

Vn+1 + (1 + β)ε sin(φn+1)

[

1 + r cos(φn+1)√
1 − r2 sin2(φn+1)

]]

. (10)

The phase φn is obtained from the condition K(φn) = 0, where K(φn) is written as

K(φn) = (φn − φn+1)

[

Vn+1 + (1 + β)ε sin(φn+1)

(

1 + r cos(φn+1)√
1 − r2 sin2(φn+1)

)]

+ β(1 + α) − εβ[α cos(φn) + cos(φn+1)] − βε

r

[
α

√
1 − r2 sin2(φn) +

√
1 − r2 sin2(φn+1)

]
. (11)

We have used the Newton’s method in order to solve numerically Eq. (11).

3. Numerical results: boundary crisis and the parameter-space

In this section we discuss some numerical results obtained for our variation of a dissipative FUM. In Fig. 2, we show
the behavior of the invariant manifolds of two saddle fixed points (Eqs. (7) and (8)) (represented by a star for m = 1 and
for m = 2) which are obtained by iteration of map T (map (1)) as well as its inverse (Eqs. (10) and (11)). Let us now
discuss the behavior of the branches of the saddle point. It is easy to see in Fig. 2(a) that the two branches of the unstable
manifolds evolve as follows: the upward branch generates the attracting fixed point while the downward branch creates
the chaotic attractor. On the other hand, the two branches of the stable manifold, which is obtained via the iteration of the
inversemapping T (see Eqs. (10) and (11)) generate the basin boundaries for both the chaotic and the attracting fixed points.
However, increasing the value of the dissipation parameter α, which is equivalent to reducing the power of the dissipation,
the unstable manifold touches the stable manifold. Such a collision implies a sudden destruction of the chaotic attractor and
also its basin of attraction. This sudden destruction of the chaotic attractor via a crossing of stable and unstable manifolds
of the same saddle point is called a boundary crisis.

In order to illustrate this, we have obtained and characterized a boundary crisis for m = 1 and m = 2 (see Eqs. (7) and
(8)), as it is shown in Fig. 2. Here we have fixed ε = 0.02, β = 0.98 and r = 0.5. It is easy to see in Fig. 2(b) that already at
α = 0.915 the chaotic attractor touches the stablemanifold and it is destroyed giving place to a transient.We also emphasize
that before the crisis and for the combination of control parameters used in Fig. 2(a) (see details in the caption of that figure),
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Fig. 3. (a) Attracting fixed points for m = 1 and m = 2 and a chaotic attractor. (b) Their corresponding basin of attraction. The control parameters used
in (a) and (b) were ε = 0.02, α = 0.91, β = 098. The region in black is the basin of attraction of the chaotic attractor; the green color is the basin for the
attracting fixed point for m = 2; in red color is the basin of attraction for the m = 1 attracting fixed point; (c) basin of attraction after the crisis for the
attracting fixed points m = 1 in red and m = 2 in green. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

there are three different attractors, namely: (i) two of them are attracting fixed points related to m = 1 and m = 2 and
(ii) a chaotic attractor (see Fig. 3(a)). Thus one might expect there must be three different basin boundaries. This is indeed
true as it is shown in Fig. 3(b). The procedure used to obtain the basin of attraction for both the chaotic and fixed point
attractors consists of iterating a grid of initial conditions in the plane Vvs.φ and observing their asymptotic behavior. Thus
wehave used a range for the initialV asV ∈ [ε, 0.5] andφ ∈ [0, 2π ]. Both ranges ofV andφ were divided in 1000 parts each,
leading to a total of 106 different initial conditions. For the combination of control parameters that we have considered, each
initial condition has been iterated up to 105 times. Here, it is important to emphasize that the boundary crisis happenswhen
the stable manifold touches unstable manifold of the same saddle fixed point. In our case, we have characterized a crisis for
the saddle fixed point for m = 2. It means that every initial condition given in the region where the chaotic attractor used
to be (before crisis), after a transient, will be captured by the attracting fixed point. Fig. 3(c) shows the basin of attraction
of the system after the crisis. We have considered as control parameter ε = 0.02, β = 0.98, r = 0.5 and α = 0.92 and as
one can see now exist two basins of attraction. One for the attracting fixed point form = 1, which has the same structure as
before the crisis, and all the other initial conditions, including these belonging to the chaotic attractor before the crisis, will
eventually converge to the attracting fixed point form = 2 and it is shown in Fig. 3(c). The procedure used to obtain Fig. 3(c)
is the same applied in Fig. 3(b). We have observed that for the control parameters used in Fig. 3(b) (before crisis) 67.25% of
the initial conditions belong to the basin of attraction of the chaotic attractor, 24.15% to the attracting fixed point m = 2
and 8.60% belong to the attracting fixed point m = 1. On the other hand, after the boundary crisis (Fig. 3(c)), 87.72% of the
initial conditions will be captured by the attracting fixed point m = 2 and the other 12.28% will be attracted to the fixed
point m = 1. Once the chaotic attractor is destroyed, these trajectories that used to form the chaotic attractor spend some
characteristic time, nt , until they leave, now, the transient and find the route to the attracting fixed point. This characteristic
time, or transient, for a single initial condition can be described by a power law of the type

nt = µρ, (12)

whereµ = α−αc , withα > αc . For the combination of control parameters thatwe have considered, namely, ε = 0.02, β =
0.98 and r = 0.5, we have found that the critical value of the dissipation parameter α is αc = 0.9141386 · · ·. The average
transient is defined by

n̄t = 1
B

B∑

i=1

ni
t , (13)

where the index i denotes a member of an ensemble of initial conditions, and B is the number of different initial conditions.
In our simulations we have considered B = 104 initial conditions randomly chosen in the chaotic attractor. Fig. 4 shows the
behavior of the average transient as a function ofµ, after a power law fitting we have found ρ = −2.0(1), which is the same
exponent obtained for the pure Fermi–Ulam model [36].

Another feature that has attracted much attention during the last decades in dissipative systems is the structure of the
parameter space. To investigate the parameter space of our model we may change two control parameters, namely, the
amplitude of oscillation of the moving wall ε and the dissipation parameter α keeping fixed the other two, namely, r and β .
Additionally, as usual, in order to define whether a given region of the parameter space has chaotic or regular behavior we
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different combinations of the control parameter. We have considered in (a) β = 0.8 and r = 0.95; (b) β = 1 and r = 0.05; (c) β = 1 and r = 0.95.
The period of the main structures are: (a) k = 6, (a) k = 3 and (a) k = 7. The exponents were coded with a continuous color scale ranging from
green–blue (positive exponents) to red–yellow (negative exponents). It is important to emphasize that the color scaling was normalized from plot to plot.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

have used as a tool the Lyapunov exponents. As discussed in Ref. [37], the Lyapunov exponents are defined as

λj = lim
n→∞

1
n
ln |Λj|, j = 1, 2, (14)

where Λj are the eigenvalues of K = ∏n
i=1 Ji(Vi, φi) and Ji is the Jacobian matrix evaluated over the orbit (Vi, φi). If at

least one of the λj is positive then the system is classified as chaotic. Let us now discuss the behavior of the parameter
space. Fig. 5 shows the structure of the parameter-space for our version of the dissipative Fermi–Ulam model with two
nonlinearities where a shrimp-shaped structure is evident for three different combinations of control parameters, namely,
Fig. 5 (a) β = 0.8 and r = 0.95; (b) β = 1 and r = 0.05; (c) β = 1 and r = 0.95, where the periods of the main
structures are: (a) k = 6, (b) k = 3 and (c) k = 7 followed by an infinite sequence of bifurcations following the rule, k × 2n.
The procedure used to construct the figure was to divide both ε ∈ [εi, εf ] and α ∈ [αi, αf ] into windows of 1000 parts
each, thus leading to a total of 106 different initial conditions, here the sub-index i denotes initial and f final, respectively.
Starting with the initial condition, φ0 = 3.5 and V0 = 2 × 10−2, for each increment in ε and α we follow the attractor,
in the sense that we have used the last value obtained for (φ, V ) before the increment, as the new pair of initial condition
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Fig. 6. The parameter space for a variant of the Fermi–Ulam model. We have considered in the first line Fig. 6 β = 0.8 and (a) r = 0.93, (b) r = 0.97 and
(c) r = 0.98. In (d–f) we have considered β = 1 and in (d) is shown the overlap of three shrimps for r = 0.7 and as r increases (e) r = 0.73 and (f) r = 0.76
the shrimps become more defined. (g) is a magnification of the box in (f) and (h) is a magnification of the box in (g). (i) shows five shrimps connected by
their ‘‘legs’’ for β = 1 and 0.8. Numbers represents the period of the main structure of each shrimp.

after the increment. However, it is possible to attribute only one color for a given combination of the control parameters
(ε, α) in this sense we lose the information about multiple attractors. In our simulations we have considered a transient
of n = 1 × 106 iterations and we computed the Lyapunov exponent for the next n = 1 × 105 iterations. The exponents
are coded with a continuous color scale ranging from red–yellow (negative Lyapunov exponents) to green–blue (positive
Lyapunov exponents). Here, it is important to emphasize that the color scaling was normalized from plot to plot in the sense
that a darker blue is attributed to the most positive exponent while a lighter green for the exponent close to zero, while
for negative Lyapunov exponents (red–yellow), red is attributed to more negative values and yellow is used for values of
the Lyapunov exponent close to zero. Fig. 6 shows the parameter space for different combinations of the control parameters
(α, β, ε, r). For the figures shown in the first linewehave fixedβ = 0.8 and different values for r , namely, Fig. 6 (a) r = 0.93,
(b) r = 0.97 and (c) r = 0.98. As one can see, the structures are connected, almost overlapping, forming amain and complex
structure. However, as the value of the parameter r increases, the structures with shrimp-shape become more evident, and
the distance between the two main bodies increases, but they are still connected by one of their ‘‘legs’’. Note that such a
behavior is observed for all the structures in Fig. 6(a–c). This can be seen in more detail in Fig. 6(d–f) where β is assumed to
be β = 1. As one can see, the structure in Fig. 6(d) is formed by the overlap of three shrimps with main period k = 4, and
as the value of the control parameter r increases the three bodies become more evident. In this case we have considered
(d) r = 0.7, (e) r = 0.73 and (f) r = 0.76. We would like to draw the attention to Fig. 6(e–f). Observe that the shape
of the three shrimps shown in Fig. 6(f) is the same as that in the box of Fig. 6(e). Thus we conclude that changing the
parameter r such a behavior might happen for other complex structures in the parameter space such as the one in Fig. 6(e)
with period 6 which is still formed by the overlapping of shrimps. Here, it is important to stress that the numbers in each
figure represent the period of the main structure of each shrimp. For example, Fig. 6(g) is a magnification of the box in
Fig. 6(f) and Fig. 6(h) is a magnification of the box in Fig. 6(g) and it shows the infinite alternation between the structures
corresponding to the chaotic and regular behavior. Starting with a shrimp with the period of the main body k = 14 we
see that it increases by 4 (18 → 22 → 26 → 30 → 34 . . .) towards another bigger periodic region (shrimp). Finally, in
order to show how complex and intriguing the parameter space can be, Fig. 6(i) shows five shrimps of period 6 connected by
their ‘‘legs’’.
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4. Conclusions

Wehave studied a variant of a Fermi–Ulammodel with two nonlinearities andwe introduced dissipation due to inelastic
collisions with both walls. The mapping that describes the dynamics of the system has been derived together with its
corresponding inverse and we have shown explicitly via the determinant of the Jacobian matrix that the model leads to
the area-contracting property. We have obtained a homoclinic crossing and thus we have shown that a boundary crisis
occurs. Once the attractor has been destroyed, a chaotic transient is observed and we have shown that after crisis the
transient follows a power law with exponent −2 similar as to the pure Fermi–Ulam model [36]. We have shown that
varying simultaneously two control parameters, namely, the dissipation parameter α and the amplitude of the moving
wall ε and using the Lyapunov exponents as a tool in order to classify regions of the parameter space with regular or chaotic
behavior, a very rich and interesting structure has been observed with infinite self-similar periodic structures of shrimp-
shape corresponding to periodic attractors, embedded in a large chaotic region which corresponds to the chaotic attractors.
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