
Nonuniformities in the Angle of Repose and Packing Fraction of Large Heaps of Particles
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We report a numerical investigation of the structural properties of very large three-dimensional heaps of

particles produced by ballistic deposition from extended circular dropping areas. Very large heaps are

found to contain three new geometrical characteristics not observed before: they may have two external

angles of repose, an internal angle of repose, and four distinct packing fraction (density) regions. Such

characteristics are shown to be directly correlated with the size of the dropping zone. In addition, we also

describe how noise during the deposition affects the final heap structure.
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Heaps of granular particles have been studied inten-
sively during the past few decades both because of their
great relevance for industrial applications and because,
from a theoretical point of view, heaps are simple many-
body systems well suited to develop and probe theories
[1,2]. The formation of grain heaps is of paramount im-
portance to understand theoretically and experimentally
complex cooperative phenomena. Examples of complex
granular phenomena that attracted recurring interest over
the years include the perennial quest for the characteriza-
tion of the stress dip under the pile [3–8], avalanching
behavior [9,10], segregation by size [11–13], creep motion
deep in the pile [14] and the remarkable properties
discovered in the growth of grain piles by revolving rivers
[15–18], and several others [19,20].

Most of the results obtained so far are for two-
dimensional (2D) heaps of grains. For instance, very re-
cently Roul et al. [21] studied packing properties of 2D
piles of grains using sophisticated molecular dynamic
simulations. Among other things, they reported the pres-
ence of a clear peak in the particle density around the
middle of the heap arguing that local compactification
and arching could perhaps explain such differences.
Variations in the angle of repose of 2D heaps were inves-
tigated as a function of experimental parameters and devi-
ations in the shape of the tail of 2D sandpiles were
discovered [22]. Experiments and theory concerning the
pressure dip under 2D grain piles along with some results
for three-dimensional (3D) heaps were reported by Atman
et al. [4] who found the controversial presence or absence
of pressure dips to be closely related to the preparation
history of the pile and called for more extensive systematic
studies.

A major factor determining the pile structure is the force
that it experiences during the deposition process. Lateral
forces constraining 2D piles are quite different from lateral
forces in 3D piles. So, it seems natural to investigate
systematically the structure of 3D packings subjected to
more complex lateral forces and to see whether they imply

hitherto unnoticed features. Although static piles of granu-
lar materials are classical examples of packings, to date
there has been no systematic study of spatially resolved
packing properties of 3D heaps. Three-dimensional pack-
ings require using a large number of particles, of the order
of two to three orders of magnitude more than in 2D
scenarios.
Here we report a study of the density distribution and the

angle of repose measured for very large 3D heaps of mono-
disperse spherical particles, as illustrated in Fig. 1. We
report results obtained for heaps with up to 25� 106 par-
ticles dropped sequentially onto a horizontal plane from a
homogeneous ‘‘rain’’ of particles emerging from a circular
area source with adjustable radius. Of main interest is to
determine bulk properties such as density, contact numbers,
repose angles, etc. Three-dimensional simulations are
hardly feasible with a full molecular dynamics approach,
but there are efficient alternative ways to address the prob-
lem. However, simpler models for ballistic deposition and
related surface growth problems can provide useful insight
for specific problems as the ones studied by us. Here we
use the well-known Visscher-Bolsterli (VB) algorithm
[10,13,23,24]. This algorithm was used in pioneering
work by Jullien and Meakin [13] to study size segregation
in 3D heaps with ð4–40Þ � 103 particles. As mentioned,
here we consider very large 3D heaps involving typically
ð10–25Þ � 106 particles. In the VB algorithm, the particles
are dropped one by one onto a growing deposit (see Fig. 1).
Particles follow the path of steepest descent until they stop
after reaching either a local stable minimum or when touch-
ing the ground. After stopping, particles are not allowed to
move anymore so that many-particle effects like, e.g.,
avalanches, cannot be simulated, although a plethora of
other effects are nicely reproduced [10,13,24]. The key
advantage of the sequential VB algorithm is that it provides
a realistic framework to rapidly compute the path of steep-
est descent and, therefore, allows us to investigate very
large assemblies of particles not accessible with other
models. We now describe our main findings.
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Figure 1(a) shows the packing fraction as a function of
the radial distance from the heap axis for a 3D heapmade of
N ¼ 107 particles deposited sequentially from random po-
sitions in the extended circular source whose section is
indicated by the solid black bar. To illustrate the growth
history of the pile, we superimposed to it five contours
showing the evolving shape obtained after depositing
N ¼ 105, 5� 105, 106, 1:6� 106, and 3� 106 particles.
From these contours, one sees how the inner triangular
density cone gets formed as the flat horizontal surface
gets smaller and smaller when the particle deposition pro-
ceeds. The packing fraction was obtained using cylindrical
coordinates (r, z, �) coaxial with the heap. For masses mi

with center of mass at ri we measured the density �ðr; z; �Þ
at r using the definition [25] �ðrÞ � P

imi�½r� ri�,
where � is a Gaussian coarse-graining function �¼
ð1=�w2Þe�ðjrj=wÞ2 , w ¼ 2R, and R is the particle radius.
Then, by averaging �ðr; z; �Þ over � we get the density
distribution ��ðr; zÞ, the quantity color coded in Fig. 1(a).

How does the packing fraction vary along large heaps
produced by extended sources? This may be recognized
both from the real heap in Fig. 1(a) and from the summa-
rizing sketch in Fig. 1(b). In general, we find heaps to
contain four distinct density (packing) regions: First, there
is a triangular region A under the dropping zone. When
A grows, particles may eventually move outside the
‘‘shadow’’ of the dropping source forming the packing
zone B. Since in this zone the VB algorithm requires
moving particles to always maintain contact with the
heap, outside the shadow of the dropping zone there is a
region B where the particles are arranged more regularly
than in A, which grows on top of a randomly deposited
initial layer. Next comes regionC, an intermediary packing
that is less regular than that of B but more regular than
that of A. Finally, in D we find the highest density of the
heap. For a heap with N ¼ 107 particles we find the
following representative densities well inside each
region: �A ¼ 0:5812� 0:0002, �B ¼ 0:5832� 0:0002,
�C¼0:5879�0:0002, and 0:59� 0:02<�D < 0:63�
0:02. Approximating boundaries by straight lines, the cor-
responding angles of repose are � ¼ ð54:5� 0:5Þ�, � ¼
ð57:5� 0:5Þ�, and ð� ¼ 68� 0:4Þ�, measured directly
from Fig. 1(a). The origin of the differences in density is
the different mechanism of sedimentation. While sequen-
tial deposition means that particles following strictly the
path of steepest descent, in the presence of noise, Fig. 3,
means that occasionally the steepest descent is interrupted,
placing the particle on a random position in a close neigh-
borhood thereby allowing previously unaccessible minima
to become accessible.
The distinct density zones described above have a re-

markable implication for the angle of repose. Instead of the
familiar single angle of repose, we find heaps in fact to
display two external angles of repose along with an internal
angle, the boundary between A and C in Fig. 1(b). As
shown by the auxiliary line on the left side of the heap in
Fig. 1(a), under the dropping zone one finds a larger angle
than outside it. Noteworthy, there are two distinct limits of

FIG. 1 (color online). (a) Packing fraction for a 3D heap with
five contours superimposed showing the growth history and that
the flat horizontal surface shrinks as the growth proceeds. The
line segment on the right of the inner triangle shows the
prediction of Eq. (1). Here N ¼ 107. The auxiliary straight
line on the left heap boundary helps the visualization of the
two angles of repose. (b) Schematic representation of a generic
heap and its main characteristics: the angles of repose �, �, �h,
where h is the height at which the angle is measured, and the four
axially symmetric density zones A, B, C, D. The small curvature
of the inner triangle A was enhanced for clarity. In all cases
investigated it is well approximated by a straight line.
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FIG. 2 (color online). Angle of repose � as a function of the
distance r from the axis (in units of particle diameters) measured
for a heap with N ¼ 2:5� 107 particles. The radius of the
dropping zone is indicated by the vertical dashed line. Note
the marked discontinuity between the angles indicate by the
horizontal dashed lines.
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interest here. Region B overtakes C (and A) when the
droping zone shrinks, or the contrary happens, C overtakes
B, if the noise increases. The usual angle of repose is the
final single angle obtained after taking anyone of these
limits. We measured the pair of external angles as follows.
For every zi, we located the set of points ri defining the
outermost surface points around the heap, plotting them as
r ¼ rðzÞ. Then, using bins with �r ¼ 10 particle diame-
ters, we fitted a straight line through the points (ri, zi) for
each bin obtaining the dependence of the local angle of
repose � with distance from the axis.

Figure 2 shows the typical jumps observed in the angle
of repose as a function of the radial distance in the heap.
One clearly recognizes the difference of being inside and
outside the rain of particles. Error bars represent the devi-
ations recorded when sampling over five distinct heaps and
show that the variations of the angles are much larger than
the fluctuations resulting from sampling different heaps.
The existence of two angles of repose can be observed
qualitatively already in a ‘‘kitchen table’’ experiment (see
Supplemental Material [26]).

Are angles of repose and density zones affected by
random fluctuations during the deposition process due to,
e.g., saltation of grains? To check this, we performed a
numerical experiment which consisted of perturbing peri-
odically the deposition process after the particle had a
number e of ‘‘events’’ in the pile, i.e., after it had the
opportunity of falling long enough so as to have changed
its contacts e times on its way down. After falling down
unperturbed for e events, the particle was then lifted ver-
tically from its position (x, y) and dropped randomly at a
nearby location (xþ �x, yþ �y), where there are random
numbers such that ð�xÞ2 þ ð�yÞ2 < 9R2, where R is the
radius of the particles. Figure 3 illustrates the result of such
experiment for increasing noise strength: one clearly sees
that region B is overtaken by C as the perturbation fre-
quency increases (from left to right). Since the correlation
of the deposition process is destroyed by noise, Fig. 3
indicates that strong noise during the deposition is respon-
sible for the increasingly higher density observed in the B
zone (when compared with the density in C). Remarkably,

zones A and D remain essentially unaffected by noise
during the whole deposition process. Furthermore, one
sees that deposition strongly affected by noise may prevent
the observation of two angles of repose.
The average number of contacts among particles is a

classic measure to characterize the packing structure of
spheres [27]. Thus, we determined the average number of
contacts in a similar way as described above for the density
but, of course, replacing �ðrÞ by cðrÞ ¼ ðPiciÞ=n, where ci
and ri are the number of contacts and position of particle i,
and n is the total number of particles inside of the averaging
volume. The result of such counting is given in Fig. 4 and is
clearly consistent with our findings described above, in
particular the geometrical picture summarized in Fig. 1(b).
In addition to the four areas in the packing fraction, the

distribution of contact numbers in Fig. 4 shows two new
features: a pronounced jump in contact numbers as one
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FIG. 3 (color online). Region B is overtaken by C as random noise during the deposition increases. In the leftmost panel the heap was
never perturbed ðe ¼ 1Þ. The other three panels, from left to right, show heaps formed when applying with an increasing frequency a
random perturbation, namely, after every 512, 128, and 32 ‘‘events’’ (see text) corresponding, approximately, to particles traveling
downwards for about 160, 40, and 10 particle diameters, respectively. Each panel displays N ¼ 3� 106 particles.
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FIG. 4 (color online). The average contact numbers inside of
the heap as a function from radial distance from the heap axis.
The insets display the variation of contact numbers along the two
rectangles, as indicated. Here N ¼ 107.
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crosses the boundary from A to C and a dip between C and
B. The boundary between A and C corresponds to a ‘‘tran-
sition zone’’, i.e., to the points where the flat surface
observed in the earlier stages of the construction of the
heap meets the tilted surface. This sharp transition zone
corresponds to an area of high contact numbers where the
surface curvature is high [see Fig. 1(a)], and therefore, we
assume the local surface curvature to be responsible for the
changes in the average contact numbers. The local curva-
ture can be determined from the surface rðzÞ described
above. This assumption is consistent with the peak in
contact numbers near the axis (area D): close to the top
of the heap the mean curvature becomes very high.

As for the dip in contact numbers between areas B and
C, it corresponds to points where the angle of repose
changes from � to �. Changes in the angle of repose
causes lower or even negative mean curvatures, a fact
consistent with the drop in the number of contacts. We
can explain this as a simple geometrical effect. A particle
stopping on a flat surface will have three contacts in
addition to the contacts from the particles deposited on
top of it. If a particle is deposited onto a surface having a
positive mean curvature (e.g., a sphere), it will have three
contacts from the particle below it, but thanks to the curved
surface, there is more space for contacts from particles
deposited on top of it, leading to an increase in the number
of contacts. In the case of negative curvature the reverse
happens: there is less space for new contacts, causing a
decrease in contact numbers.

The angles �, �, and � are not independent from each
other, and therefore, we now derive a relation interconnect-
ing them. During the initial phase of the growth, the heap
has a flat surface [see the five contours in Fig. 1(a)].
Particles falling onto this flat surface stay on it, since
only a quite negligible amount falls off the edge.
Particles that fall onto the tilted surface form a layer of
approximately constant thickness on the whole inclined
surface. From these assumptions and, for simplicity, work-
ing with an ‘‘average’’ angle � ¼ ð�þ �Þ=2, it is not
difficult to derive (see Supplemental Material [26]) a dif-
ferential equation for rðhÞ, the function describing how the
radius r of the flat surface shrinks as a function of the
height h of the heap:

dr

dh
¼ � cot� � �ðrþ h cot�Þ2 � S2

ðrþ h cot�Þ2 � r2
cot�; (1)

where S is the radius of the dropping zone. Of course,
this equation is only physically meaningful as long as
r � 0. The solution obtained by numerical integration
for S ¼ 60 is shown by the straight line in Fig. 1(a).
Solving the equation for h ¼ 0, we get �0 � �ðh ¼ 0Þ ¼
arctanð2 tan�Þ ¼ 71�. Note that Eq. (1) can be rescaled
with respect to S in such a way that only r=S and h=S
appear in it. This means that Eq. (1) is scale invariant

and needs to be solved just once, thanks to the relation
rSðhÞ ¼ xrS=xðh=xÞ.
Heaps created using spheres with diameters uniformly

distributed in the range [0.99, 1.01] and [0.85, 1.15] show a
similar duality in the angle of repose, in variations
in contact numbers, and in density distribution. Thus,
all effects reported here are not effected by small
polydispersity.
In conclusion, the analysis of very large 3D heaps of

particles proves to be quite revealing. As summarized in
Fig. 1(b), we find such heaps to be characterized by several
new geometrical features: (i) two external angles of repose
� and �, (ii) an internal angle of repose �, and (iii) four
distinct density (packing fraction) regions, A, B, C,D. This
means that instead of just the familiar single angle of
repose [28], heaps may in fact display two distinct angles
of repose, a fact implying the existence of four character-
istic density zones in the heap. As for the external and
internal angles of repose, � and �, we showed them to be
interrelated according to Eq. (1), a relation that depends of
the radius S of the dropping zone (‘‘rain of particles’’). We
have also performed an experiment to investigate the im-
pact of noise in the deposition. Such experiments indicated
that the duality of the angle of repose may be washed out
by moderate to strong noise during the deposition process.
We expect the effects described to be easier to observe in
rains where grains do not interact (low density rain) and
when suppressing the action of inertia, e.g., by performing
experiments in an ambient viscous fluid, or building heaps
using adhesive particles. Once a particle gets in touch with
an already sedimented particle, it still can slowly roll under
the action of gravity, but it would not exert any inertial
forces. We hope our findings motivate their experimental
verification.
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