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Negative coefficient of normal restitution
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This paper shows that negative coefficients of normal restitution occur inevitably when the interaction force
between colliding particles is finite. We derive an explicit criterion showing that for any set of material properties
there is always a collision geometry leading to negative restitution coefficients. While from a phenomenological
point of view, negative coefficients of normal restitution appear rather artificial, this phenomenon is generic and
implies an important overlooked limitation of the widely used hard sphere model. The criterion is explicitly
applied to two paradigmatic situations: for the linear dashpot model and for viscoelastic particles. In addition,
we show that for frictional particles the phenomenon is less pronounced than for smooth spheres.
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I. INTRODUCTION

Both, kinetic theory of granular matter, based on the
Boltzmann equation [1–3], as well as highly efficient event-
driven molecular dynamics (eMD) simulation of granular
matter [4–6] are based on the hard sphere model of particle
collisions. Hard sphere collisions are characterized by δ-
shaped interaction forces. Therefore, in a collision the particles
instantaneously exchange momentum, while their positions
stay invariant. Due to the instantaneous character of the
collisions, the dynamics of any finite hard sphere system is
represented by a sequence of binary collisions (events), leading
to the main concept of eMD. As only momentum is transferred
during a collision, each event is characterized by only two
scalar values: The coefficient of normal restitution εn relating
the post- and precollisional normal component of the particles’
relative velocity and the corresponding coefficient of tangential
restitution for the tangential component. For colliding hard
spheres located at �r1 and �r2, traveling at velocities �̇r1 and �̇r2,
the coefficient of normal restitution εHS

n is, thus, defined by

(�̇r ′
1 − �̇r ′

2) · ê0
r = −εHS

n

(�̇r 0
1 − �̇r 0

2

) · ê0
r , (1)

where for each quantity X, the symbol X0 denotes the value of
X at the beginning of the impact at time t0 and X′ is the value
at time t0 + τ , when the collision terminates. Equation (1)
addresses hard spheres implying instantaneous collisions, τ →
0. Note that the unit vector êr ≡ (�r2 − �r1)/ |�r2 − �r1| remains
unchanged during a collision, ê′

r = ê0
r , due to the instantaneous

character of hard sphere collisions. Therefore, ê0
r appears on

both sides of Eq. (1). For soft sphere collisions characterized
by finite interaction forces and contact durations τ , this may
be invalid: Oblique impacts may lead to variations of the unit
vector ê′

r �= ê0
r . Consequently, for soft spheres the coefficient

of normal restitution εn is defined by(�̇r ′
1 − �̇r ′

2

) · ê′
r = −εn

(�̇r 0
1 − �̇r 0

2

) · ê0
r , (2)

which reduces to Eq. (1) in the limit τ → 0. The variation of
the unit vector êr during a collision may be expressed by the
angle

ϕ′ ≡ cos−1
(
ê0
r · ê′

r

)
. (3)

For both, kinetic theory based on the Boltzmann equation as
well as eMD, it is essential to assume that ϕ′ is negligible.
Then, Eq. (1) allows for the computation of the post-collisional

particle velocities from the impact velocities, that is, the
collision rule needed in eMD simulations and also the
Jacobian ∂ (�v1,�v2) /∂

(�v ′
1,�v ′

2

)
needed for the integration of

the Boltzmann equation. It was shown, however, that the
assumption ϕ′ ≈ 0 is not always justified [7].

In textbooks, the coefficient of normal restitution is fre-
quently assumed to be a material constant [8], 0 � εn � 1.
While from experimental (e.g., [9–13]) and theoretical (e.g.,
[14–18]) studies it is known that the coefficient of normal
restitution depends on the impact velocity or is a fluctuating
quantity (e.g., [19]) it was still assumed to not fall below zero.

However, for the case of oblique impacts of nanoclusters
it was shown recently [20] that the rotation of the unit vector
ϕ′ may lead to negative values of the coefficient of normal
restitution defined by Eq. (1). This surprising result was
attributed to the softness of nanoclusters leading to relatively
long contact durations which, in turn, may lead to a significant
reorientation of the particles’ normal vector during a collision.

While the investigation in [20] refers to nanoclusters
colliding at very large impact velocity (1850 m/s), here we
show that negative coefficients of normal restitution are a
much more general phenomenon. We show that negative values
occur inevitably for any type of collision whose dynamics is
governed by finite interaction forces leading to finite duration
of contact: For any set of material properties there is always a
collision geometry leading to negative values of εHS

n .
We wish to mention that there are alternative definitions of

the coefficient of restitution (e.g., [21–25]), which avoid the
problem addressed here. However, only the definition Eq. (1)
or (2), respectively, referred to as Newton’s model [26], allows
for the computation of the post-collisional vectorial velocities
which are needed for both event-driven simulations and kinetic
theory.

In Sec. II we introduce our notation. In Sec. III we
derive a general condition for negative coefficients, while in
Secs. IV and V we specify our findings to particles which
interact via a linear dashpot model and to smooth viscoelastic
spheres, respectively. Section VI discusses the role of frictional
forces between the colliding particles. Finally, in Sec. VII we
summarize our results and present some outlook.

II. COLLISION OF SMOOTH SPHERES

The collision of a pair of smooth spheres of masses m1 and
m2, located at �r1 and �r2, is governed by Newton’s equation
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FIG. 1. Geometry of a particle collision.

of motion,

meff �̈r = �F = Fnêr , (4)

where �r ≡ �r2 − �r1 and meff ≡ m1m2/(m1 + m2). The collision
takes place in a plane perpendicular to the conserved angular
momentum

�L = meff �r × �̇r ≡ LêL. (5)

In this collision plane we rewrite Eq. (4) in polar coordinates
{r,ϕ} (see Fig. 1):

meff r
2ϕ̇ = L, (6a)

meff r̈ = Fc + Fn = meff rϕ̇
2 + Fn, (6b)

with the centrifugal force Fc. Together with the initial
conditions

r(0) = r0, ṙ(0) = ṙ0, ϕ(0) = 0, (7)

where we assume that the particles contact at time t = 0,
Eqs. (6) describe the collision dynamics for an arbitrary normal
force Fn. The collision terminates at time t = τ where [18,27]

ṙ(τ ) > 0 and Fn = 0. (8)

III. NEGATIVE VALUES FOR THE COEFFICIENT OF
NORMAL RESTITUTION

With the relative vector �r and its velocity

�r = rêr and �̇r = ṙ êr + rϕ̇êϕ, (9)

where

êr =
⎛
⎝ cos ϕ

sin ϕ

0

⎞
⎠ and êϕ =

⎛
⎝− sin ϕ

cos ϕ

0

⎞
⎠ , (10)

the coefficient of normal restitution [Eq. (1)] reads

εHS
n ≡ − (ṙ ′ê′

r + r ′ϕ̇′ê′
ϕ) · ê0

r(
ṙ0ê0

r + r0ϕ̇0ê0
ϕ

) · ê0
r

= − ṙ ′

ṙ0︸︷︷︸
>0

cos ϕ′ + r ′ϕ̇′

ṙ0︸︷︷︸
�0

sin ϕ′. (11)

FIG. 2. Eccentric collision of spheres.

To quantify the influence of the post-collisional angle ϕ′ on
εHS
n we define the function

�εn

(
ϕ′) ≡ εHS

n (ϕ′)
εHS
n (ϕ′ = 0)

− 1, (12)

such that �εn < −1 indicates negative values of εHS
n [see

Fig. 4(c)]. Obviously, according to Eqs. (6a) and (7), for this
we need two necessary conditions: L �= 0, that is, a noncentral
collision and finite contact duration τ �= 0 which requires
a finite interaction force. The second requirement excludes
both instantaneous collisions (τ → 0) which corresponds to
�εn = 0 and sticky collisions (τ → ∞) where εn = 0 due to
vanishing post-collisional velocity.

Let us characterize the eccentricity of the collision by e ≡
d/l, see Fig. 2. Then, from geometry and Eq. (5) follows

L = meff v d and ṙ0 = −v
√

1 − e2. (13)

As L is conserved, Eq. (6a) yields

rϕ̇ = v d

r
(14)

and the factor in front of the sine term in Eq. (11) reads

r ′ϕ̇′

ṙ0
= − d

r ′√1 − e2
. (15)

Consider elastic particles, where r ′ = l1 and, of course,
εn = 1 [see Eq. (2)] which implies ṙ0 = −ṙ ′. Then Eq. (11)
reads

εHS
n = cos ϕ′ − 1√

(1/e)2 − 1
sin ϕ′, (16)

that is, for fixed impact eccentricity, the value of εHS
n and in

particular its sign is governed by the angle ϕ′. Figure 3 shows
εHS
n for elastic particles as a function of the post-collisional

angle ϕ′ [Eq. (3)]. We notice two remarkable properties:
(1) Even for elastic particles, εHS

n is not a constant. Besides
material properties and impact velocity, it depends on the
impact eccentricity and hence on the collision geometry.

(2) Depending on the impact eccentricity, εHS
n may attain

negative values for any value of ϕ′ �= 0.

1For inelastic particles this statement would not be correct since
the collision terminates before the distance of the particles reaches
the sum of the radii, that is, the particles lose contact in slightly
compressed state, which has some nontrivial consequences for the
coefficient of normal restitution, see [18].
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FIG. 3. Coefficient of normal restitution εHS
n [hard sphere defini-

tion, Eq. (1)] of elastic particles as a function of the post-collisional
angle ϕ′ for various impact eccentricities e ≡ d/l [see Eq. (16)].

While colliding, the contacting spheres form a dumbbell-
shaped object. For noncentral collisions, e > 0, this dumbbell
rotates around its center of mass with angular velocity ϕ̇

determined by the angular momentum �L which increases
linearly with the impact eccentricity e. According to Eq. (6a)
this implies that ϕ̇ also increases with e. For small deformation,
r ≈ l, Eq. (14) yields

ϕ̇ = const. = v d

r2
≈ e

v

l
. (17)

This angular velocity leads to a finite post-collisional
rotation angle ϕ′ if the duration of the contact is finite, which of
course holds for all finite interaction forces. Assuming small
deformations, ϕ′ is determined by the ratio α of the contact
duration τ and the time 2π/ϕ̇ the dumbbell would need for a
full rotation:

α ≡ τ ϕ̇

2π
, ϕ′ = α 2π. (18)

For most interaction force laws and realistic material
parameters, the post-collisional angle ϕ′ is rather small,
except for cases where strong attractive forces like adhesion
or liquid bridges are involved. Therefore, here we assume
0 � ϕ′ � π

2 to simplify the notation. In this interval, εHS
n (ϕ′)

is a monotonously decreasing function for all values of the
eccentricity, see Fig. 3. Equation (16) then provides a criterion
for negative values of εHS

n for the collision of smooth elastic
spheres:

ϕ′ > arctan

√(
1

e

)2

− 1. (19)

With Eq. (18) we obtain

α 2π > arctan

√(
1

e

)2

− 1 (20)

as a criterion to assess whether for a given set of parameters
there is a collision geometry leading to negative coefficients
of normal restitution.

We emphasize that the value of εHS
n is not related to the

dissipative properties of the collision. For the case of elastic

collisions shown in Fig. 3, obviously energy is conserved.
Nevertheless, except for central collisions (eccentricity e = 0),
εHS
n adopts values different from unity.

In the following sections we apply these results to two
widely used interaction force models. For both models we
present exhaustive parameter studies to highlight negative
values of εHS

n , or more general the geometry dependence of
εHS
n , as a significant, far reaching effect.

IV. LINEAR DASHPOT MODEL

The linear dashpot model for the collision of particles
defines the interaction force by

Fn = k(l − r) − γ ṙ, (21)

see [28]. For a central, elastic collision (e = 0, γ = 0), the
duration of contact reads [27]

τ = π
√

meff/k, (22)

which decays only weakly for moderately off-central colli-
sions, 0 < e � 0.8 [see Fig. 4(a)]. Therefore, due to Eq. (17),
ϕ′ increases almost linearly with eccentricity [Fig. 4(b)]. Since
−�εn(ϕ′) increases monotonously for ϕ′ < π/2 [see Eq. (16)
and Fig. 3], εHS

n (e) is a decreasing function [Fig. 4(c)].
For larger eccentricity, e � 0.8, the centrifugal force dom-

inates the contact mechanics, thus, the contact duration τ (e)
decreases steeply [Fig. 4(a)]. This effect overcompensates the
linear growth ϕ̇ ∝ e [Eq. (17)], turning ϕ′(e) into a decreasing
function [Fig. 4(b)].
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FIG. 4. Linear dashpot model, abscissa of all panels is the impact
eccentricity e ≡ d/l. (a) Contact duration τ (e) for the dissipative
and the elastic case (γ = 0). (b) Rotation ϕ′(e) of the normal vector
êr at the end of the collision. (c) Coefficient of normal restitution
εHS

n (e) due to the hard-sphere definition, Eq. (1) (solid line) and εn(e)
due to Eq. (2) (dashed line). Model parameters: k = 1.5 × 105 N/m,
R = 0.1 m, ρ = 1140 kg/m3, v = 10 m/s, γ = 1000 kg/s (unless
specified otherwise).
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Nevertheless, for large eccentricities even small rotation
angles ϕ′ lead to significant −�εn(ϕ′) (see Fig. 3). Conse-
quently, εHS

n (e) is a monotonically decreasing function over
the full range of impact eccentricities e [Fig. 4(c), solid line].

Solving Newton’s equation, Eqs. (6) with the initial con-
ditions Eq. (7) and the interaction force Eq. (21) together
with the condition Eq. (8) for the end of the collision,
we obtain the contact duration as a decreasing function of
inelasticity τ (γ ). Consequently, for all eccentricities e, ϕ′(γ ),
and −�εn(γ ) are decreasing functions. Therefore, for all e, the
slope of εHS

n (e) for a damped collision is smaller than for the
undamped case.

The possibility of intersections of the curves εHS
n for

different γ [see Fig. 4(c)] may be understood from the fact that
both εHS

n (e = 0) and −dεHS
n (e)/de decrease with inelasticity.

Using τ from Eq. (22) and assuming small deformations
(r ≈ l), according to Eq. (18) the rotation angle is approxi-
mately given by

ϕ′ = α 2π = π e
v

l

√
meff

k
. (23)

Exploiting the fact that εHS
n (e) decreases with eccentricity and

for all eccentricities −�εn(ϕ′) is an increasing function, in
Figs. 5 and 6 we discuss the parameter dependence of εHS

n .
Figure 5(a) shows εHS

n (e) for fixed k but various damping
coefficients γ . It exemplifies the impact of damping detailed
in Fig. 4(c). Figure 5(b) displays εHS

n (e) for various spring
constants k for elastic particles. As predicted by Eq. (23),
−�εn decreases with increasing k. Hence the εHS

n (e) curves
for larger stiffness k attain larger values for all e.
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FIG. 5. Linear dashpot model, coefficient of normal restitution vs
the impact eccentricity. (a) Solid lines: εHS

n (e) due to Eq. (1), dashed
lines: εn(e) due to Eq. (2) for various damping constants γ (kg/s).
(b) εHS

n for elastic particles (γ = 0) of various stiffness k (kN/m).
Symbols (×) indicate the prediction of Eq. (20) for εHS

n (e) = 0. Same
parameters as in Fig. 4.
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FIG. 6. Linear dashpot model, coefficient of normal restitution
as a function of the impact eccentricity εHS

n (e). (a) For various
impact velocities v ( m/s); (b) for various particle radii R (m); (c) for
various densities ρ (103 kg/m3). Symbols (×) indicate the theoretical
prediction Eq. (20) for εHS

n (e) = 0. Same parameters as in Fig. 4.

The same line of reasoning explains Fig. 6: From Eq. (23)
we see that ϕ′ grows with impact velocity. The εHS

n (e) curves
for higher impact velocity hence attain smaller values than
those for lower impact velocities [see Fig. 6(a)]. Similarly, the
angle ϕ′(e) shows a clear dependence on particle size R ≈ l

[Fig. 6(b)] and material density ρ (meff ∝ ρ) [see Fig. 6(c)].
The symbols in Figs. 5(b) and 6 indicate the prediction

Eq. (20) for the eccentricity where εHS
n (e) changes its sign.

As said before, Eq. (20) is a valid approximation for elastic
spheres assuming small deformations and impact situations
where centrifugal forces can be neglected for the contact
duration. It hence fails for small k and e and large v, ρ, R.

V. VISCOELASTIC SPHERES

As a second important example, we consider the collision
of viscoelastic spheres, with the particle-interaction force [16]

Fn = F el
n + F dis

n = ρel(l − r)3/2 − 3

2
Aρelṙ

√
l − r, (24)

where

ρel ≡ 2Y
√

Reff

3(1 − ν2)
(25)

and Y , ν, and Reff denote the Young modulus, the Poisson ratio,
and the effective radius Reff = R1R2/(R1 + R2), respectively.
The elastic part F el

n of this widely used collision model [28–30]
is given by the Hertz contact force [31]. The dissipative part
F dis

n was first motivated in [32] and then rigorously derived
in [16] and [33], where only the approach in [16] leads to an
analytic expression for the parameter A, being a function of the
elastic and viscous material parameters, see [16] for details.
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TABLE I. Elastic characteristics for some common materials [34].

Young’s Density Poisson’s
Material modulus (GPa) (kg/m3) ratio

Iron 200 7870 0.291
Copper 110 8930 0.343
Magnesium 44 1740 0.35
Nylon 1 1020 0.4
Silicon rubber (hard) 0.1 2000 0.5
Silicon rubber (soft) 0.01 2000 0.5

First, we discuss the system behavior for elastic spheres
A = 0, disregarding dissipation. Figure 7 shows the co-
efficient of normal restitution εHS

n as a function of the
impact eccentricity e for some realistic material parameters,
see Table I.

From Fig. 7 we notice that the emergence of negative
values of εHS

n is not restricted to high impact velocity collisions
of nanoclusters characterized by strong adhesive forces [20].
Instead, it occurs also for realistic material properties and more
realistic impact rate. Moreover, the interval of eccentricity
leading to a negative coefficient of restitution is not small,
remember that with the assumption of molecular chaos the
probability density for a collision with eccentricity e increases
linearly, dp(e)/de ∝ e, 0 � e < 1.

Disregarding centrifugal forces, the contact duration
reads [18]

τ = 3.218 R
[
√

2πρ(1 − ν2)]2/5

Y 2/5(−ṙ0)1/5
. (26)

Assuming small deformations (r ≈ l), from Eqs. (18) and (13)
we find the post-collisional rotation

ϕ′ = 1.609
e

(
√

1 − e2)1/5
v4/5

[√
2πρ(1 − ν2)

Y

]2/5

. (27)

The numerical prefactors in Eqs. (26) and (27) come from a
combination of 
 functions (see [18,35]).
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FIG. 7. Elastic spheres (Hertz): coefficient of normal restitution
εHS

n vs the eccentricity e for some realistic materials. The inset shows a
magnification of the main panel. Parameters: R = 0.1 m, v = 10 m/s
and material parameters as specified in Table I.
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FIG. 8. Viscoelastic spheres, coefficient of normal restitution
vs the impact eccentricity εHS

n (e) for various values of (a) impact
velocity v (m/s) (elastic spheres A = 0); (b) particle radius R (m);
(c) dissipative constant A (10−3 s). Symbols indicate the theoretical
prediction [Eq. (20)] for εHS

n (e) = 0. Model parameters: Soft silicon
rubber, see Table I; R1 = R2 = 0.1 m, v = 10 m/s, A = 10−4 s
(unless specified otherwise).

Following the same line of discussion as in Sec. IV, we
obtain again that εHS

n (e) is a monotonically decreasing function
(see Figs. 7–9). With εHS

n (ϕ′) [see Eq. (16), Fig. 3] and
ϕ′ = ϕ′(e,v,ρ,ν,Y ) [see Eq. (27)], we can understand the
dependencies of the function εHS

n (e) on the material and system
parameters, drawn in Figs. 8 and 9.

The influence of the system parameters R, v, and material
characteristics A, ρ, Y is qualitatively rather similar to the
case of particles which interact via a linear dashpot force,
described in detail in Sec. IV. Interestingly, for elastic particles
Eq. (27) indicates that the rotation angle ϕ′ and hence εHS

n are
independent of the particle radius. For finite inelasticity A,
however, the dependence on the particle radius enters via l

and ρel. Therefore, for inelastic particles, changing radii of the
particles has the same impact as changing the inelasticity itself
[Fig. 8(b)].

Note that for common materials, the Poisson ratio ν is
of minor importance. Only for highly auxetic materials its
influence is not negligible [ν ≈ −1, Fig. 9(a)].

The symbols in Figs. 8 and 9 indicate the prediction
[Eq. (20)] for the eccentricity where εHS

n (e) becomes negative.
As stated before, the criterion Eq. (20) is applicable for
elastic collisions and to small deformation where, additionally,
centrifugal forces may be neglected. If applicable, it yields
surprisingly good predictions.

VI. THE ROLE OF FRICTION

So far we considered the collision of smooth spheres where
the interaction force acts in normal direction �F = Fnêr . In this
section we address collisions under the action of a repulsive
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FIG. 9. Elastic spheres (A = 0), coefficient of normal restitution
as a function of the impact eccentricity εHS

n (e) for various values of
(a) Poisson’s ratio ν; (b) density ρ (103 kg/m3); (c) Young’s modulus
Y (GPa). Symbols indicate the theoretical prediction [Eq. (20)] for
εHS

n (e) = 0. Same parameters as in Fig. 8.

normal force and an additional friction force acting in tan-
gential direction �F = Fnêr + Ft êϕ . A tangential force applied
to an extended body leads to a torque and, thus, to rotational
motion of the particles. For the discussion it is sufficient to
consider the collision of particles whose initial angular velocity
is zero. With this assumption the collision still takes place in
a plane which allows to maintain the notation of Sec. II and
the collision geometry sketched in Fig. 2. The rotation of the
particles may then be described by scalar quantities φ1 and φ2

with the corresponding vectorial representations �φ1 = φ1 êφ

and �φ2 = φ2 êφ . Likewise the angular velocities φ̇1 and φ̇2.
The equations of motion for the collision then read

r̈ = rϕ̇2 + Fn

meff
,

ϕ̈ = −2
ṙ ϕ̇

r
+ Ft

r meff
, (28)

φ̈1 = − 1

I1
R1Ft , φ̈2 = 1

I2
R2Ft ,

where I1 = 2m1R
2
1

5 and I2 = 2m2R
2
2

5 are the moments of inertia
of the spheres. The initial conditions are

r(0) = r0; ṙ(0) = ṙ0; ϕ(0) = 0; ϕ̇(0) = ϕ̇0 = e
v

l
;

φ1(0) = 0; φ2(0) = 0; φ̇1(0) = 0; φ̇2(0) = 0. (29)

Let us assume a large enough friction μ → ∞ such that
the colliding particles do not slide on one another but form a
dumbbell for the duration of the collision, that is, the particles
rotate together with the dumbbell. Its moment of inertia with
respect to an axis through its center of mass, perpendicular to

its axis of symmetry, reads Ifric = 14mR2

5 if we further assume
identical particles. In contrast, for smooth spheres (i.e., φ̇1 =
φ̇2 = 0) the corresponding moment of inertia of the dumbbell
is given by Ismooth = 2mR2. From conservation of angular
momentum (consisting of orbital angular momentum of the
two particles and the particle spin) we obtain the ratio of the
rotation velocity of the dumbbell for the cases of smooth and
frictional spheres:

ϕ̇0
fric

ϕ̇0
smooth

= Ismooth

Ifric
= 10

14
≈ 0.71. (30)

Since the contact duration is only weakly affected by friction,
from Eq. (30) follows that for frictional particles the rotation
angle of the unit vector is reduced as compared with the
nonfrictional case ϕ′

fric ≈ 0.71 ϕ′
smooth. Consequently, for all

eccentricities −�εn(e) is smaller for frictional than for smooth
particles and, thus, the function εHS

n (e) attains higher values for
frictional than for smooth particles. Therefore, friction reduces
the decay of the function εHS

n (e) and the effect of negative
coefficients of normal restitution is shifted toward larger values
of e (see Fig. 10).

For illustration we specify the tangential force to the widely
used model by Cundall and Strack [36]:

Ft = −sign ζ (t) · min(kt |ζ |,μ|meffrϕ̇
2 + Fn|), (31)

where

ζ (t) =
∫ t

t ′=0
vrel,t(t

′)dt ′, (32)

vrel,t = rϕ̇ + (R2φ̇2 − R1φ̇1), (33)

and kt and μ are the stiffness of the contact and the friction
parameter, respectively. Figure 10 displays the influence of
friction on the coefficient of restitution εHS

n (e) for both
normal force models, the linear dashpot [Fig. 10(a)] and for
viscoelastic spheres [Fig. 10(b)]. As described above, in both
cases friction partially suppresses the rotation angle of the unit

(a)

(b)

FIG. 10. Elastic frictional spheres, coefficient of normal resti-
tution vs the impact eccentricity εHS

n (e) (dashed lines, μ �= 0) and
smooth spheres (solid lines, μ = 0). (a) Linear dashpot model, same
parameters as in Fig. 4; (b) Hertz force, same parameters as in Fig. 8.
Parameters of the friction force: kt = 105 N/m, μ = 108.
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vector ϕ′. Therefore, for frictional particles, −�εn is smaller
than for smooth spheres.

VII. SUMMARY

The concept of the coefficient of restitution, characterizing
the mechanics of binary collisions of granular particles is the
foundation of both, highly efficient event-driven molecular
dynamics simulations and kinetic theory of granular gases and
rapid granular flows. Obviously the underlying assumption of
instantaneous collisions is an idealization which is not in strict
agreement with the dissipative nature of particle collisions.
Indeed, for any realistic material, the elastic and dissipative
interaction forces are finite enforcing a finite duration of
collisions.

The detailed consideration of the interaction forces leads
to two conclusions: First, the coefficient of restitution is not
a material constant but depends on the impact rate. This
experimentally known fact (e.g. [10]) agrees with theoretical
results based on the numerical [16] or analytical [17,18,27,35]
solution of Newton’s equation of motion for the collision
process. Second, in contrast to the assumption of instantaneous
collisions, the intercenter unit vectors of the particles êr just
before and just after the collision are not identical (e.g. [7])
except for perfectly central collisions. While the first result
was taken into account for simulations and kinetic theory
by many authors, so far the rotation of the unit vector is
disregarded for eMD and kinetic theory. With the most natural
assumption of molecular chaos in granular gases and rapid
granular flows, the majority of collisions is, however, not
close to central but rather eccentric due to the probability
distribution dp(e) ∝ e de for the eccentricity 0 � e < 1 (see
Fig. 2). It may, hence, be questioned whether the concept of
the coefficients of restitution is justified.

In a recent paper by Saitoh et al. [20] it was shown that the
oblique collision of highly adhesive clusters of nanoparticles
at very large impact rate leads not only to the expected
dependence of εn on the impact rate but also on the impact
geometry, namely on the eccentricity e which may lead even to
negative values of εn when the common hard-sphere definition
Eq. (1) is applied. Inspired by [20], in this paper we focus on

the simplest case, namely the coefficient of normal restitution
εn for colliding soft and frictional spheres. In particular, we
raise the question whether the coefficient of normal restitution
is always positive.

In this work we show that both the dependency of the
coefficient of normal restitution on the impact geometry as
well as negative values of the coefficient are not a peculiarity of
colliding nanoclusters. In opposite we show that the described
effects are unavoidable for all kind of collisions governed
by finite interaction forces. We specify our results to two
important interaction forces, the linear-dashpot force and
the force between viscoelastic spheres. The former is of
importance for kinetic theory as it leads for central collisions
e = 0 to an impact-velocity independent coefficient of normal
restitution, which is widely used in the literature on granular
gases and rapid granular flows. The latter leads for e = 0 to
an impact-velocity dependent coefficient of restitution which
is inconvenient for kinetic theory but important for realistic
simulations of granular systems.

For both cases we study the effect of impact eccentricity on
the coefficient of normal restitution for a wide range of realistic
material and system parameters. We find that the emergence
of negative values of the coefficient of normal restitution is
not restricted to collisions of nanoclusters characterized by
strong adhesive forces at high impact velocity [20], but it is
a significant effect for particles of common materials under
rather common conditions. Consequently, the dependence of
εn on the impact geometry should be taken into account for
the kinetic theory of granular systems. Since unavoidable
negative values of εn render highly efficient event-driven
MD impossible, we believe that new approaches should be
developed for event-driven simulations which is subject of
ongoing research.
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[28] J. Schäfer, S. Dippel, and D. E. Wolf, J. Phys. I (France) 6, 5

(1996).

[29] H. Kruggel-Emden, E. Simek, S. Rickelt, S. Wirtz, and
V. Scherer, Powder Technol. 171, 157 (2007).

[30] A. B. Stevens and C. M. Hrenya, Powder Technol. 154, 99
(2005).

[31] H. Hertz, J. Reine Angewandte Mathematik 92, 156 (1882).
[32] G. Kuwabara and K. Kono, Jpn. J. Appl. Phys. 26, 1230 (1987).
[33] W. A. M. Morgado and I. Oppenheim, Phys. Rev. E 55, 1940

(1997).
[34] MatWeb, online resource, accessed March 2012, http://

www.matweb.com/
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