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Coefficient of restitution as a fluctuating quantity
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The coefficient of restitution of a spherical particle in contact with a flat plate is investigated as a function
of the impact velocity. As an experimental observation we notice nontrivial (non-Gaussian) fluctuations of the
measured values. For a fixed impact velocity, the probability density of the coefficient of restitution, p(ε), is
formed by two exponential functions (one increasing, one decreasing) of different slope. This behavior may be
explained by a certain roughness of the particle which leads to energy transfer between the linear and rotational
degrees of freedom.

DOI: 10.1103/PhysRevE.84.041306 PACS number(s): 45.70.−n, 45.50.Tn, 45.05.+x

I. INTRODUCTION

The dissipative collision of a solid particle with a hard plane
may be described by the coefficient of normal restitution,

ε = −v′ · n
v · n

, (1)

relating the normal components of the relative velocity before
and after a collision at the point of contact. The unit vector
n indicates the direction normal to the plane. Obviously,
ε = 1 stands for elastic collisions whereas ε = 0 indicates
the complete dissipation of the energy of the relative motion.
There are several techniques for measuring the coefficient of
restitution, including high-speed video analysis (see, e.g., [1])
and sophisticated techniques where the particle is attached to
a compound pendulum with the axis of rotation very close to
the center of mass [2,3], which makes this method particularly
suitable for the measurement of the coefficient of restitution
for very small impact velocities down to mm/s and below. In
the presence of gravity, the coefficient of restitution can be
measured by determining the time lag between consecutive
impacts of a particle bouncing on a hard plane by using a
piezoelectric force sensor (see, e.g., [4,5]) or an accelerometer
mounted to the plate, which detects elastic waves excited by
the impact (see, e.g., [6]). When both particle and plate are
metallic, the time of the impacts can be determined by applying
a dc voltage between ball and plate and determining the instant
when the circuit closes [6]. In many papers, the time lag and,
thus, ε is determined by recording the sound emitted from a
spherical particle bouncing on an underlying flat plane (see,
e.g., [7,8] and many others). From the times ti of impacts one
can compute the coefficient of restitution via

ε(vi) = v′
i

vi

= ti+1 − ti

ti − ti−1
, vi = g

2
(ti − ti−1), (2)

where vi and v′
i are the normal pre- and postcollisional

velocities of the impact taking place at time ti and g is the
acceleration due to gravity.

Although it is frequently assumed that the coefficient of
restitution is a material constant (e.g., this assumption is
common in many textbooks and widely used in simulations),
numerous experimental studies have revealed that it depends
on many parameters: impact velocity, material characteristics

of the impacted bodies, particle size, shape, roughness, and
surface properties like adhesion. Here we restrict ourselves
to the investigation of ε of a single dry steel ball bouncing
on a hard plane such that the coefficient of restitution is only
a function of the impact velocity ε = ε(v) and the surface
properties characterized by microscopic asperities.

If the particle was a perfect sphere and the plane was
perfectly flat, the coefficient of restitution would be a
deterministic function of the system parameters. In this
case, fluctuations of the measured values would be caused
exclusively by imperfections of the experiment. However, in
several experimental investigations, using either photographic
techniques [9] or an acoustic emission analysis [5,6], an
extraordinary high fluctuation level was noticed whose origin
remained obscure and cannot be attributed to the imperfections
of the measurements (see below). In this paper, by means of
large-scale experiments as well as micromechanical modeling
we make an attempt to characterize the fluctuations of the
coefficient of restitution and to explain the mechanism leading
to these fluctuations.

II. EXPERIMENTS

For the experiments we use a robot to move a small vertical
tube to a desired position {x,y,z}. In the beginning of each
experimental trial a stainless steel bearing ball is suspended
at the end of the tube by means of a vacuum pump. Upon
switching off the pump, the sphere is released to bounce
repeatedly off the ground where the sound is recorded by a
piezoelectric sensor. When the ball eventually comes to rest,
it is pushed to a defined position by a fan where it is picked
up by the robot who moves the ball again to the start position
for the next trial. In each cycle the initial {x,y} position is
chosen randomly within the central region of the ground plate
such that edge effects [10] are not noticeable. The dropping
height is chosen randomly from z ∈ [9,10] cm, corresponding
to initial impact velocities v ∈ [1.33,1.4] m/s, which allows
for the observation of 90 to 100 bounces of the ball. A
massive hard glass plate of size 30 × 20 × 1.9 cm3 serves
as a ground plate for the experiment. The measuring process
is fully automatized, which allows us to perform a large-scale
experiment collecting data from thousands of bouncing-ball
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FIG. 1. (Color online) Experimental results. Top: Coefficient of
restitution ε plotted against the normal impact velocity v. The data
(200 000 data points) are colored according to the normalized
frequency of occurrences. Bottom: Histograms of ε for impact
velocities from small intervals, centered around v = 0.3, . . . ,1.0 m/s.
The lines are exponential fits.

trials. To assure stationary conditions, the temperature and
humidity of the experimental environment were kept constant.

From the analysis of the sound-sensor signal we obtain the
impact times ti and, thus, via Eq. (2) the normal impact veloci-
ties vi and the coefficients of restitution ε(vi). Figure 1 displays
the abundance of data, ε(v), for a stainless steel ball (radius
R = 3.0 mm, Young’s modulus Y = 200 GPa, Poisson ratio
ν = 0.30, density ρs = 7.90 g/cm3). Besides the expected
decay of ε with increasing impact velocity (see, e.g., [11,12]),
we observe a large scatter of the data. The scatter of the
data increases appreciably with decreasing impact velocity. An
analogous trend can also be noticed from the data presented
in [6], but was not found in earlier similar experiments [4,5].
We wish to note that the experiment in [6] corresponds to a
completely different regime. There, the impact velocity where
the fluctuations adopt their largest values corresponds to a
jumping height of only 51 nm; therefore, we believe that the
fluctuations in [6] and the fluctuations reported here are of
different origin.

The fluctuations seem to be small; however, if only the
uncertainty (here �t = 2 μs) of the measurement of ti was
responsible for the scatter, one would expect fluctuations of the
measured coefficient of restitution in the range of 0.024% for
the last impacts (v ≈ 0.2 m/s) while we observe fluctuations
of the order of 1%.

The scatter of ε is asymmetric; that is, the deviation of the
data with ε lower than the mean is noticeably larger. This can
be seen also in Fig. 1 (bottom), which shows the normalized
frequency p(ε) of measurements of a certain value of ε for
several small intervals of the impact velocity v. Thus, if we
consider ε as a fluctuating quantity, p(ε) is its probability
density function. This function reveals strongly non-Gaussian
behavior, but the distribution is shaped by a combination of
two exponential functions (one increasing, one decreasing) of
different slope. By detailed error analysis, we can exclude that
these uncommon statistical properties are due to imperfections
of the measurements but are a consequence of microscopic
asperities at the sphere’s surface. This hypothesis is checked
below by means of a numerical simulation.

Note that the data presented in Fig. 1 are not an universal
description of the fluctuations as a function of impact velocity.
Since the sphere was released from approximately the same
height, the data for different velocities, v ≈ (1.2, . . . ,0.2)
m/s correspond to different impact numbers, N ≈ (3, . . . ,90).
Alternatively, one could plot the function p(ε) separately for
fixed impact number by varying the initial height. While in
simulations (see next section) we could generate the plot p(ε)
separately for fixed number of impacts; in the experiment we
cannot since this would require us to vary the initial height
over a very large interval (millimeters to kilometers) which is
neither experimentally feasible nor in agreement with the as-
sumption that plastic deformations and air drag are negligible.

The stationarity of the experiment deserves some discus-
sion: The experiment is repeated many thousands of times
using the same sphere; thus, the sphere has undergone a
total of about 2 × 106 collisions. The mechanical setup of
the experiment would be significantly simpler if we would
use not a single sphere but many virtually identical spheres.
However, since we are looking for small fluctuations of
the coefficient of restitution we had to exclude that these
fluctuations originate from the statistical scatter of the surface
and bulk properties of different spheres. For stationarity, we
have to assure that the surfaces of the plane and the sphere
remain invariant. We analyzed the surface of the sphere by
means of a Scanning Electron Microscope (SEM) close to
the beginning of the experiment (after about 100 000 bounces
which were not used for the statistics) and close to the end of
the experiment. As a result, no significant differences could be
seen, neither regarding the circularity of the ball nor the surface
properties. While the surface reveals some tiny scratches,
the structure of the surface remains approximately invariant.
During the experiment a small part of the plate was covered
from impacts to serve as a reference for damage analysis.
Regular visual inspection did not show any damage of the
plate. As an à posteriori argument, we analyzed the statistics
of the fluctuations using only data from the first 10% of the
impacts and from the last 10% separately. Both sets of data
lead to identical statistics up to fluctuations; thus, no significant
influence of wear was apparent.
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FIG. 2. (Color online) Sketch of the particle model and closeup
of its surface.

III. NUMERICAL SIMULATIONS

The procedure of our simulation is analogous to the
experiment; the rigid ball is dropped from a certain height
h and repeatedly collides with a smooth, hard plate. Air drag
is neglected1 and the ball is subjected only to gravity.

The ball is modeled as a composite multisphere particle
(Fig. 2).

The large central sphere of radius R is randomly covered by
many tiny spheres of different microscopic size, representing
asperities due to surface roughness. The center of each small
sphere i of radius Ri is located at the surface of the central
sphere. The number of asperities N ∼ 106 and their maximal
size Ri/R ∼ 10−3 corresponds to a coverage of about 25%,
which is in approximate agreement with the coverage of
the surface by small scratches seen in SEM pictures. Since
the mass ratio mi/m ∼ 10−9 we can safely neglect the
contribution of the small particles for the computation of the
moment of inertia of the ball. Thus, the ball is characterized
by its mass m, R, center-of-mass velocity vG, angular velocity
ω, the set of the radii, Ri , of the asperities, and the set of their
position vectors, r i , pointing from the center of the large sphere
to the asperities. Note that there is an important difference
between the surface texture of the sphere (the experiment) and
the asperities intended to represent roughness in the model:
The scratches and other imperfections of the sphere originate
from microscopical plastic deformations while the asperities
of the model are invariant. Thus, the texture of the sphere
changes permanently due to impacts. However, since after
some relaxation the surface texture is statistically invariant as
seen from SEM images and by comparing the first 10% of
the data with the last 10%, the model with invariant asperities
seems to be appropriate.

1For the measured range of impact velocities and given particle size
and mass the neglect of air resistance causes a minor systematic error
since both intervals ti+1 − ti and ti − ti−1 [see Eq. (2)] are shorter
due to air drag. Assuming the air drag force is proportional to the
square of the velocity of the particle, we obtain the relative error
‖εair − ε‖/ε ≈ 1.8 × 10−5 to 9.4 × 10−4 for the measured ranges
of impact velocity v ∈ [0.1,1.4] m/s and coefficient of restitution
ε ∈ [0.974,0.985]. This deviation is far below the resolution of our
data; thus, the influence of air drag can be safely neglected. Moreover,
the influence of air drag is a systematic effect that does not concern the
fluctuations of the coefficient of restitution in which we are interested.

When bouncing, the ball may come in contact with the
plane either through the central sphere or through one of the
asperities. In both cases the collision is assumed instantaneous
and inelastic, characterized by coefficients of restitution. In
the intervals between collisions the ball follows a ballistic
trajectory,

rG(t) = rG(t0) + vG(t0)(t − t0) + (t − t0)2

2
g, t � t0, (3)

where t0 is the time of the preceding collision and g is gravity
while the angular velocity ω ≡ ωeω remains constant. The
evolution of a vector p fixed to the particle is then given by

prot = p cos ωt + eω(eω · p)(1 − cos ωt) + (eω × p) sin ωt

= Â(t) p, (4)

which defines the rotation matrix Â [13]. Therefore, the
particle contacts the ground when the center of the first asperity
j reaches the height Rj ; that is, the time tc of contact follows
from the condition

min
j=1,N

[rG(tc) + Â(tc)rj ]z = Rj , (5)

where [· · · ]z means the vertical component of the argument.
The vectorial impact velocity at the point of contact rc is then

vc = (vc · n)n + (vc · t)t = vG + ω × rc, (6)

where n and t are the unit vectors in normal and tangential
directions (see Fig. 3).

The postcollisional velocity at the contact point is given by

v′
c · n = −ε (vc · n) , v′

c · t = β (vc · t) , (7)

with the coefficients of normal and tangential restitution ε and
β. Finally, we compute the postcollisional velocity v′

G and
angular velocity ω′:

v′
G − vG = �vG = 1

m
P,

ω′ − ω = �ω = 1

Ĵ
rc × P,

(8)

where the transferred momentum P is obtained from Eqs. (6)
and (7):

v′
c − vc = �vG + �ω × rc = 1

m
P + 1

Ĵ
(rc × P) × rc, (9)

FIG. 3. Sketch of a particle collision. For simplicity, only the
impacting asperity (of exaggerated size) is drawn.
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with the mass m and the moment of inertia Ĵ of the particle.
Using Eqs. (5) and (8) we can compute the dynamics of the

bouncing particle and, in particular, the times and velocities
of the impacts, while the coefficients of restitution ε and β are
given. For ε as a function of the normal impact velocity vc we
use the expression for viscoelastic spheres [12]

ε(vc) = 1 +
∞∑

i=1

CiAi(vc)i/10, (10)

with Ci being known constants (C1 = C3 = 0, C2 = −1.153,
C4 = 0.798, C5 = 0.267, . . . , see [12] for details) and Ai be-
ing material constants. We determined the first three nontrivial
constants, A2 ≈ 0.0467, A4 ≈ 0.1339, and A5 ≈ −0.2876 by
fitting Eq. (10) to the experimental data shown in Fig. 1.

The coefficient β of tangential restitution depends on both
bulk material properties and surface properties. Therefore, β

cannot be analytically derived from material properties, except
for the limiting case of pure Coulomb friction [14]. Here, we
use β = 1.

IV. SIMULATION RESULTS

On the macroscopic level (neglecting the microscopic
asperities at the surface of the particle), the simulation results
can be analyzed in the same way as the experimental data.
We introduce the macroscopic coefficient of restitution ε̃ as
the ratio of the postcollisional to precollisional center-of-mass
velocities in the normal direction:

ε̃ = −v′
G · n

vG · n
. (11)

Surprisingly, the macroscopic interpretation of our simulation
results depicted in Fig. 4 shows a striking resemblance
to the experimental data. While the actual coefficient of
normal restitution ε is a function of the normal impact
velocity described by Eq. (10), the macroscopic coefficient of
restitution ε̃ computed via Eq. (11) reveals strong fluctuations,
in agreement with the experiment.

The probability densities p(ε̃) (bottom panel of Fig. 4) are
also close to the distribution obtained in the experiment. Their
shape is excellently approximated by a combination of two
exponential functions, one increasing and one decreasing. The
peaks of p(ε̃) are in line with the values of ε(vG) obtained
from Eq. (10) for the corresponding velocities.

For the case of an absolutely smooth particle (no asperities),
the impact velocity vc at the point of contact is the same
as vG and ε̃ is equal to the coefficient of normal restitution
ε. Therefore, in this case, there would be no scatter of the
measured values of ε̃. Consequently, the scatter in these data
must be attributed to the asperities at the surface of the particle.
From the agreement of the experimental data (Fig. 1) and
the simulation data (Fig. 4), it became apparent that the tiny
microscopic imperfections of the surface of the otherwise
macroscopically smooth particle lead to the characteristic
fluctuations of the coefficient of normal restitution. One notices
a slight asymmetry in the shape of the probability density in
case of the experimental results [i.e., p(ε) compared to p(ε̃)].
We believe that this asymmetry may be attributed to additional
dissipative forces that were not taken into account in our model.

FIG. 4. (Color online) Simulation results. Top: The macroscopic
coefficient of restitution ε̃ plotted against the normal center-of-mass
velocity vG at the moment of impact. The data (200 000 data points)
are colored according to the normalized frequency of occurrences.
Bottom: Histograms of ε̃ for velocities from small intervals, centered
around vG = 0.3, . . . ,1.0 m/s. The lines are exponential fits.

Let us consider the role of the sphere’s rotational degrees
of freedom, which may be interpreted as internal degrees
of freedom since they do not enter the computation of the
coefficient of restitution, neither in the experiment Eq. (2) nor
in the simulation Eq. (11). Initially, the particle had no spin
and only one degree of freedom in its translational motion.
However, due to eccentric impacts caused by asperities, the
particle gains some rotation and acquires velocity in the
horizontal direction. The partition of total kinetic energy in
rotational and translational degrees of freedom constantly
varies from one impact to another. Thus, the kinetic energy
of the linear vertical motion (the only component which
enters ε) just before a collision is transformed into energy
of the rebound vertical velocity, dissipated energy due to
the coefficient of restitution, and changes in the horizontal
and rotational velocities. The latter two contribution may be
positive or negative, leading to a reduced or increased value of
the measured coefficient of restitution, according to Eqs. (2)
and (11). Therefore, the particle rotation may be considered
as a reservoir of internal energy, leading to fluctuations of the
measured coefficient of restitution.
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The substantial increase of scatter in the data with the
decrease of impact velocity can be attributed to the growing
role of the rotational degrees of freedom in the energy
partition. In consecutive collisions the translational energy
decreases appreciably due to dissipation, but the amount of
energy concentrated in rotation varies only slightly. Thus,
the proportion of rotational to translational energy increases
with the number of particle bounces. The kinetic energy
transfers from the rotational to translational mode and vice
versa result in a more apparent fluctuation of the coef-
ficient of restitution. As a consequence, the scattering of
the restitution coefficient increases as the impact velocity
decreases.

V. CONCLUSION

We have performed an experimental and numerical study
of the coefficient of normal restitution as a function of impact
velocity. From about 2.2 × 106 experiments of the same
stainless steel sphere bouncing on a massive horizontal plate,
we determined experimentally the probability distribution of
the fluctuations of the coefficient of normal restitution, ε.

We found that ε increases as the impact velocity decreases.
For fixed impact velocity, the probability density of the
coefficient of restitution, p(ε), is non-Gaussian. It consists of
two exponential functions (one increasing, one decreasing)
of different slope. We modeled the particle used in the
experiment by a mathematical sphere whose surface is covered
by a large number of much smaller spheres (asperities) to
simulate a certain roughness. The simulations revealed the
same properties of the fluctuations. Since the asperities are
the only origin of scatter in our simulation model,
we conclude that the experimentally observed fluctuations of
the coefficient of restitution coefficient are due to microscopic
surface roughness of the ball, causing energy transfer between
the translational and rotational degrees of freedom.
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Physica A 231, 417 (1996).
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