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By means of experiments in microgravity conditions, we show that granular systems subjected to
sinusoidal vibrations respond either by harmonic or gaslike dynamics, depending on the parameters of the
vibration, amplitude and frequency, and the container size, while subharmonic response is unstable, except
for extreme material properties and particular initial conditions. The absence of subharmonic response in
vibrated granular systems implies that granular dampeners cannot reveal higher-order resonances, which
makes them even more attractive for technical applications. Extensive molecular dynamics simulations
support our findings.
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I. INTRODUCTION

Granular systems subjected to vibration reveal a plethora
of interesting phenomena such as self-organized convection
flows, e.g., Ref. [1], various segregation phenomena,
e.g., Refs. [2,3], dynamical structure formation, e.g.,
Refs. [4–7], and interesting phase-transition phenomena,
e.g., Refs. [8,9], just to name a few. To a large degree, these
effects are influenced by gravity; therefore, in order to
study these systems in the absence of gravity, experiments
have been performed in parabolic flights, drop towers, and
sounding rockets. Examples for such investigations con-
cern shear flow, e.g., Refs. [10,11], cooling and clustering
in granular gases [12–17], propagation of sound [18],
Maxwell-demon effects [19], and violations of the energy
equipartition in dilute granular systems [20–22]. A recent
review can be found in Ref. [23].
When a container partly filled by granular material is

sinusoidally agitated under conditions of weightlessness,
distinct regimes of dynamical behavior have been predicted
based on particle simulations [24,25]. In experiments in
microgravity [26], it was found that the granulate reveals
either gaslike behavior (uncorrelated particle dynamics) or
harmonic dynamics, depending on the parameters of driving
and the material properties, in agreement with the numerical
predictions [25]. In particular, it was shown that the gas-
regime and harmonic dynamics are fundamentally different
with respect to the dissipation of energy due to inelastic
particle collisions. The dissipated energy per unit time as a
function of the parameters of driving as well as the basins of
stability of both regimes can be explained up to quantitative
agreement using a relatively simple model based on a one-
particle description [26,27]. Interestingly, while the model
description will allow also for subharmonic response, such
behavior was never observed in hundreds of single experi-
ments [26,28] as well as numerical simulations [24,25].
Therefore, in this paper, we raise the question if and under

which conditions a subharmonic response is possible for a
box filled by granular material and vibrated in microgravity.
The technical application behind our research is granular

vibration dampeners. Essentially, such dampeners are
containers (or cavities) partially filled by granular material.
When subjected to vibration, dissipative particle collisions
counteract the source of vibration, thus, attenuating the
mechanical oscillation of an attached structure. Granular
dampeners have a number of features which make them
interesting for technical applications: They operate almost
independently of the temperature, also in a harsh environ-
ment, and are free of maintenance due to the simplicity of
their construction. Granular dampeners do not need any
fixed anchor as a reservoir of momentum. There are several
fields of applications of granular dampeners, such as
attenuation of the vibration of mechanical tools and
machinery [29], medical tools [30], sports equipment
[31,32], turbine blades [33,34], break drums [35], metal
cutting machines [36], antennas [37–39], bonding
machines [40], and others. Granular dampeners were also
considered for damping vibrations of the space shuttle
engine [41,42]. As gravity tends to demobilize the granu-
late [43], granular dampeners work particularly well in
applications where the acceleration due to gravity can be
neglected as compared to the acceleration of the vibration.
This scope includes, of course, applications in microgravity
conditions, e.g., in spacecraft engineering. Thinking of
futuristic applications, granular dampeners may be a
suitable candidate for in situ resource utilization [44], as
they can be easily manufactured from granular materials
abundant on the Moon or Mars [45].
Unfortunately, in contrast to other types of dampeners, for

granular dampeners, by now there is no reliable design rule
which will allow an engineer to tailor a dampener to a
specific application, e.g., characterized by typical amplitude
and frequency of oscillation. Our research aims towards
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developing such design rules. By means of experiments, in
combination with numerical simulation, we explain why, for
realistic material parameters, the subharmonic response of a
granulate to vibrational agitation is suppressed; thus, there
are no higher-order resonances in the response of granular
dampeners.

II. SYSTEM DESCRIPTION

We consider a rectangular box of size Lx × Ly × Lz filled
by N particles of mass m under vibration xðtÞ ¼ A cosðωtÞ.
The clearance lg is the difference between box length Lx and
the width of the layer the granulate will form when packed
(RCP) in a box of base area Ly × Lz; see Fig. 1. From
numerical simulations [24,25] as well as experiments [26], it
is known that there are two different modes of dynamical
behavior. For large amplitude A ≫ lg, we find the granulate
in the “collect-and-collide” regime where all the material is
collected during the inward stroke and, thus, forming a
relatively densely packed layer at the wall of the container.
The layer of particles leaves the wall collectively when the
container passes the phase of maximal velocity; that is,
the sinusoidal driving decelerates. The period is closed when
the granulate impacts the opposite wall of the container,
where the material is collected again; see Fig. 1(b). For a
small amplitude A≲ lg, the system behaves gaslike; in other
words, the trajectories of the particles are uncorrelated due to
the fact that they hit the driving wall at random phases [26].
The collective properties of these regimes are rather

different: In the gas state, the dynamics of the particles is
essentially decoupled from the periodic driving mecha-
nism, except for a small fraction of particles populating the
region close to the walls which is swept by the periodic
motion of the wall. The interaction of these particles with
the driving walls is just sufficient to balance the energy loss
the gaseous bulk of the material due to dissipative particle-
particle collisions. In contrast, in the collect-and-collide
mode, when the particles impact the wall collectively, the
system undergoes an inelastic collapse at the approaching
wall due to a large number of collisions (see Refs. [46,47]
for a detailed discussion). Therefore, twice per period, the
kinetic energy corresponding to the relative velocity
between the particles and the wall is dissipated. The great
dissipative power of granular systems in this regime gave
rise to their application as granular dampeners; see, e.g.,
Refs. [26,27,43,48]. Following the reasoning above, the
system was described by an effective one-particle model,

where the granulate was represented by a single particle
interacting with the walls at the vanishing coefficient of
restitution ε ¼ 0 [26]. In particular, one obtains a criterion
for stability of the collect-and-collide regime: At the inward
stroke, the material will lose contact with the wall at t ¼ 0
when the acceleration of the sinusoidal motion changes its
sign. The position of the quasiparticles is then xpðtÞ ¼ Aωt.
The position of the opposite wall is xwðtÞ¼LxþAsinðωtÞ.
The collision takes place at time tc when xw−xp ¼Lx− lg.
For stability, at tc, the opposite wall must accelerate
towards the impacting material to allow for the next
“collect” phase, thus,

Aωtc ¼ A sinðωtcÞ þ lg; ω2 sinðωtcÞ < 0: ð1Þ

For harmonic response ωtc < 2π, Eq. (1) has a solution if
A > lg=π which is a necessary and sufficient condition for
stability, independent of ω. Otherwise, for A < lg=π, the
synchronization condition is violated, and the system will
enter the gas regime (see Ref. [26] for a full discussion).
However, while A > lg=π is the condition for a harmonic

solution of Eq. (1), this equation has also subharmonic
solutions [49],

2πn ≤ ωtc < ð2nþ 1Þπ; n ¼ 1; 2;…; ð2Þ

corresponding to stability conditions

1

2n

lg
π
> A >

1

2nþ 1

lg
π

ð3Þ

(see Fig. 2).
Although the single-particle model explained experi-

ments up to quantitative agreement [26–28,50], the

(a) (b)

FIG. 1. Sketch of the system considered here, showing gaslike
behavior (a) and collective motion (b). For further explanation,
see the text.

FIG. 2. Illustration of the stability condition of Eq. (1). The
sinusoidal lines (not to scale) symbolize the motion of the
container walls at x ¼ A sinðωtÞ and x ¼ A sinðωtÞ þ lg, cor-
rected by the clearance lg. For stability of the collect-and-collide
regime, the trajectory of the quasiparticle must not leave the
shaded areas, thus, defining the valid intervals for the amplitude
corresponding to the harmonic solution of Eq. (1) and subhar-
monic solutions of escalating order shown up to n ¼ 3.
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existence of subharmonic solutions of Eq. (1) contradicts
previous results: In hundreds of single experiments and in
numerical simulations [24,25], no sign of subharmonic
response became apparent. From this finding, we conclude
that the model description is still incomplete or insufficient.
Therefore, we review the preconditions of the theory by
means of an experiment.

III. EXPERIMENT

A polycarbonate box is partially filled by different
amounts (mass m, particle number N) of steel beads
(diameter 4 mm, material density 7.8 g=cm3, Young’s
modulus 203.5 GPa) and driven by a linear actuator to
perform sinusoidal oscillations of adjustable frequency ω
and amplitude A. Table I summarizes the characteristics of
our samples. To exclude the influence of gravity, the
experiment is performed during a parabolic flight allowing
for stable microgravity condition ð0� 0.05gÞ for time
intervals of about 22 sec. Each experiment is repeated five
times. The combinations of the applied driving amplitudes
A ¼ 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 cm and frequencies f ¼ 0.5,
1.0, 2.0, 4.0 Hz constitute, thus, an abundance of 120 single
experiments. While observing the collect-and-collide
regime for all systems fulfilling the stability condition
for harmonic response, no sign of subharmonic response is
found for systems fulfilling the condition for subharmonic
stability (samples 1 and 4 at A ¼ 10 cm). Instead, for
systems not fulfilling the condition for harmonic response,
the dynamics is always found gaslike, in contradiction with
the model description.
The experiment is recorded by means of a video camera

placed perpendicular to the direction of motion x at frame
rate 240 frames= sec and resolution of 448 × 336 pixels. To
obtain a space-time representation of the granulate (Fig. 3)
for each frame, we compute the average gray value in the
plane perpendicular to the oscillation, thus, condensing the
system’s state at a certain time to a single line. Finally, these
lines are stacked up to yield a space-time plot of the particle
trajectories of the granulate and the container walls during
the oscillatory motion. Figure 3 shows these plots for both
the collective regime at different frequencies [Figs. 3(a)–3(d)]
and an example of the gas regime [Fig. 3(e)].
While the model assumes that the particles undergo an

inelastic collapse at the incoming wall and leave the
wall collectively at velocity v ¼ Aω, Fig. 3 evidences a

dispersion of the particle trajectories. In other words, in
contrast to the model assumption, the collapse is incom-
plete, preserving a small amount of the particles’ relative
motion. Consequently, after detaching from the collecting
wall, not all particles move at velocity v ¼ Aω, but some of
them move faster since they carried over some kinetic
energy from the previous period of oscillation. Finally,
this dispersion invalidates the impact time tc according to
Eq. (1), but instead, tc has to be replaced by a finite interval
of time.
Note that the incompleteness of the collapse is a

consequence of large frequency but not of insufficient
inelasticity. The relevant part of the inward stroke ωt ∈
ð2n; 2nþ 1Þπ, n ¼ 0; 1; 2;…, is an accelerated motion.
Therefore, the collapse will take place for any value of the
coefficient of restitution, provided the inward stroke lasts
long enough. This behavior is similar to the collapse of a
particle (or a column of particles) jumping on a horizontal
plane under gravity where the collapse occurs in finite time.
In Fig. 3, we see that all particles reach the opposite wall

(or the surface of the sediment forming at the wall) before
the wall starts to decelerate, that is, before ωt ¼ π. In
particular, the particles collected in the vicinity of the wall
(those who collide prior to others with the wall) lose
essentially all their energy relative to the inwards accel-
erating wall. Therefore, the time when the wall starts to
decelerate, at ωt ¼ π, the particles detach from the wall
such that no particle can be slower than Aω. While no
particle may have smaller velocity than Aω, particles may
be faster (in absolute value). This higher velocity concerns,
in particular, those particles which were collected immedi-
ately before ωt ¼ π, such that these particles did not suffer

FIG. 3. Space-time plot of the experiment in the collect-and-
collide regime (a)–(d) for different amplitudes and in the gaslike
state (e). For all systems in the collective mode, we see clear
dispersion of the trajectories.

TABLE I. Sample characteristics.

Sample
Lx × Ly × Lz

ðmm3Þ m (g) N lg (mm) Ad (mm)

1 100 × 50 × 50 126.3 473 89.4 27� 3
2 50 × 50 × 50 135.3 507 38.7 7� 1
3 50 × 50 × 50 71.0 266 44.1 11� 1
4 100 × 50 × 50 63.8 239 94.7 20� 2
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too many collisions before the block of particles detaches
from the wall. Therefore, plots of the type shown in Fig. 3
allow us to directly determine the interval of velocities of
the ejected particles, ðvslow; vfastÞ ¼ ðAω; Aωþ ΔvÞ, where
Δv depends only very weakly on the amplitude and
approximately linearly on the frequency,

Δv ¼ dAω; d > 0: ð4Þ

The constant d characterizes the incompleteness of the
inelastic collapse and should, therefore, depend on the
filling height and dissipative material parameters. For a
detailed discussion, see Ref. [47]. The limited data set
obtained in our parabolic flight experiments does not,
however, allow us to determine these dependencies in
detail. The experimentally measured Δv=ω ¼ dA are given
in the last column of Table I

IV. CRITICAL DISPERSION PARAMETER

From numerical simulations (see below and the
Supplemental Material [51]), we find that even a small
number of particles not joining the collective dynamics
destabilizes the collect-and-collide regime. Therefore, we
extend the criterion Eq. (1) by requiring that the synchro-
nization condition must hold true for all particles, including
the slowest and the fastest traveling at vslow ¼ Aω and
vfast ¼ Aωþ Δv, respectively. Consequently, for stability,
both equations

Aωtc ¼ A sinðωtcÞ þ lg;

Aωtc þ Δvtc ¼ A sinðωtcÞ þ lg; ð5Þ

that is,

ωtc − lg
A
¼ sinðωtcÞ; ð6Þ

ð1þ dÞωtc − lg
A
¼ sinðωtcÞ; ð7Þ

must have solutions for the same basin of allowed
amplitudes

A >
lg
π
; ð8Þ

for harmonic response or

1

2n

lg
π
> A >

1

2nþ 1

lg
π
; ð9Þ

for subharmonic response of order n ¼ 1; 2; 3;…, which
poses a condition for d.
Consider first the harmonic response 0 ≤ ωtc ≤ π. If

Eq. (6) has a solution in this interval, Eq. (7) has also a

solution for arbitrary d ∈ ð0;∞Þ; thus, for all system
parameters, a harmonic response is possible.
The solution of Eq. (6) corresponding to subharmonic

dynamics or order n ¼ 1; 2;…, belongs to the interval
2nπ ≤ ωtc ≤ ð2nþ 1Þπ. Because of Eq. (5), the largest
admissible value of Δv is adopted for ωtc ¼ ð2nþ 1Þπ
which corresponds to the largest possible value dðnÞmax

corresponding to the order n for a given ratio lg=A
compatible with n; see Eq. (3). From Eq. (7) follows then

0 ¼ ð1þ dðnÞmaxÞ2nπ − lg
A
; ð10Þ

which has the solution

dðnÞmax ¼ lg
2nπA

− 1: ð11Þ

Summarizing these results and combining with the com-
patible intervals of A for harmonic and subharmonic
solutions Eq. (3), we arrive at the maximum values for
d that lead to stable collective motion:

dmax ¼
8
<

:

∞ for A > lg=π;
lg

2nπA − 1 for 1
2n

lg
π > A > 1

2nþ1

lg
π ;

no solution else;

ð12Þ

with n ¼ 1; 2;…. Figure 4 shows dmaxðAÞ for lg ¼ 89 mm
corresponding to sample 1 (Table I). The envelope function
of dmaxðAÞ,

denvmaxðAÞ ¼
Aπ

lg − Aπ
; ð13Þ

diverges at A ¼ lg=π in agreement with the existence of
the harmonic response for all values of the dispersion
parameter, d.
From Fig. 4, we understand immediately our experi-

mental result (sample 1): No subharmonic response can be

0 5 10 15 20 25 30
0

0.2

0.4

d m
ax

ha
rm

on
ic

FIG. 4. Maximum admissible dispersion parameter as a func-
tion of amplitude as given by Eq. (12) for lg ¼ 89 mm (sample 1).
For given d, the shaded regions indicate the values of A for which
the subharmonic response of certain order n can be assumed. The
condition A > lg=π for harmonic response is also shown; here,
dmax → ∞. The dashed line shows the envelope given by Eq. (13).
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found since the first subharmonic mode would be stable for
Ad≲ 4.8 mm in a certain amplitude range, while in the
experiment, we find Ad ¼ ð27� 3Þ mm. The same applies
for the other samples specified in Table I.

V. INSTABILITY OF SUBHARMONIC MODES

Let us look to the scenario by which an existing
subharmonic mode becomes unstable. To this end, we
perform molecular dynamics (MD) simulations [52] of the
system specified by Table I (sample 1). The dispersion
parameter d describing the completeness of the inelastic
collapse depends on the thickness of the layer of particles in
the container Lx − lg determining the number of collisions
occurring when the bulk of material collides with the wall
and by the dissipative properties of particle collisions
specified by the coefficient of restitution ε. Since Lx − lg
is specified by our system setup, we choose ε to adjust d
such that the subharmonic response becomes possible due
to Eq. (12). Figure 5 shows the space-time plot correspond-
ing to Fig. 3 but obtained from the MD simulation. For
Fig. 5(a), the value of ε is chosen such that the resulting
d allows for a subharmonic response due to Eq. (12).
Figure 5(b) shows the system using slightly more elastic
particles ε ¼ 0.2, such that subharmonic motion is unsta-
ble. The transition from the unstable subharmonic regime
to the stable gas regime starts with the desynchronization of
single particles. Then the transition is accomplished after a
few periods of oscillation. Initial conditions are chosen
such that the particles form a dense layer at the box wall
with velocity Aω in the direction of the agitation and zero
velocity perpendicular to it. For animations showing the
system in stable harmonic and subharmonic motion and the
process of instability of subharmonic motion, see Ref. [51].

Note that fulfilling the condition Eq. (12), e.g., by
choosing a low-enough coefficient of restitution, is a
necessary condition to obtain a subharmonic response
but not necessarily sufficient: For the system shown in
Fig. 5(a) revealing a stable subharmonic response for the
initial conditions described above, we perform MD sim-
ulation starting with particle positions homogeneously
distributed and velocities of random direction and absolute
v ∈ ð−Aω; AωÞ. By scanning the interval of stable first-
order subharmonic motion A ¼ ð13;…; 18Þ mm in steps of
0.5 mm and simulating over 200 periods for each value, we
do not find any case of self-organized subharmonic motion,
but in all cases, the gas state is assumed except when
applying the boundary conditions as used in Fig. 5(a).

VI. CONCLUSION

A container partially filled by granular material responds
to external sinusoidal vibration either by gaslike dynamics
or by harmonic response while a subharmonic response is
observed neither in experiments nor in numerical simu-
lations. This behavior is not understood, in particular, since
a model which reliably characterizes the stability of the gas
and harmonic domains up to quantitative agreement with
experimental data and successfully describes the dissipative
properties of such a system does predict intervals of
parameters where subharmonic dynamics is supposed to
be stable. In conflict with these predictions, for these
intervals of parameters, the gas regime appears stable.
To solve the puzzle, by means of experiments performed in
microgravity, we show that the assumption of an inelastic
collapse taking place when the bulk of particles collectively
impacts the wall is not justified in a strict sense. Instead, a
certain dispersion parameter d should be applied, character-
izing the residual relative velocities of the particles due to
incomplete collapse. The resulting conditions for stability
of subharmonic modes of escalating order require highly
inelastic particle interaction, which explains that subhar-
monic modes have not been observed so far in experiments
and simulations. Performing MD simulations, we evidence
the stability of subharmonic motion, provided the stability
criterion is fulfilled. We can show that even single particles
desynchronizing from the collective motion due to a
fluctuation can destabilize subharmonic motion. While the
stability criterion Eq. (12) is a necessary condition for
subharmonic motion, it remains unclear whether it is suffi-
cient: In a large number of MD simulations using random
initial conditions and with parameters fulfilling the stability
criterion, we cannot find cases of spontaneous transitions to
subharmonic motion. It remains unclear whether this lack is
due to long transients or whether the initial conditions need to
be chosen from a certain basin of attraction to allow the
system to develop subharmonic dynamics.
The absence of subharmonic response of a container

partially filled by granular material implies that there are
no higher-order resonances in the dynamics of granular

FIG. 5. Space-time plot obtained from a MD simulation of the
system specified by Table I (sample 1). (a) Highly inelastic
particles ε ¼ 0.02 leading to Ad ≈ 3.0 mm such that the sub-
harmonic response is possible (AdðnÞmax ¼ 4.23 mm) as given by
Eq. (12), provided appropriate initial conditions. (b) Same as (a)
but for ε ¼ 0.2 resulting in Ad ≈ 5.5 mm such that the sub-
harmonic motion is unstable. See, also, Ref. [51].
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dampeners which makes such dampeners even more
attractive for technical applications.
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