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Stochastic behavior of the coefficient of normal restitution
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We consider the collision of a rough sphere with a plane by detailed analysis of the collision geometry. Using
stochastic methods, the effective coefficient of restitution may be described as a fluctuating quantity whose
probability density follows an asymmetric Laplace distribution. This result agrees with recent experiments by

Montaine et al. [Phys. Rev. E 84, 041306 (2011)].
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I. INTRODUCTION

The dynamics of rapid granular flows and granular gases
is governed by dissipative collisional interactions of particles
with each other and with the system walls. Assuming instanta-
neous interaction, for smooth particles the dissipative character
of particle interactions may be quantified by the coefficient of
normal restitution (COR), ¢ < 1, defined as
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where V and V' are the relative velocities of the colliding
particles before and after the collision, and 7 is the unit vector
normal to the impact plane in the instant of the collision.

The COR is the most important characteristic of a granular
system leading to many exciting effects such as characteristic
velocity correlations [1,2], violation of molecular chaos [3],
non-Maxwellian velocity distribution [4,5], overpopulated
high-energy tails of the distribution function [6], anomalous
diffusion and other transport coefficients [7-9], cluster insta-
bilities [10,11], and many others; see, e.g., [12]. In virtually
all publications on granular gases and rapid granular flows, it
is assumed that the COR is either a constant or a function of
the impact velocity. This is in contrast to several experimental
results, e.g., [13—18], where it was found that even for almost
spherical particles, the COR reveals significant scatter, which
cannot be explained by the imperfections of the experiment
but must be attributed to tiny imperfections of the surfaces
in contact. Performing large-scale bouncing ball experiments
using a robot, Montaine et al. [19] analyzed the fluctuations
of the COR of more than 103 single impacts and found that
besides the known dependence on impact velocity, the COR
may be described as a fluctuating quantity whose probability
distribution is a combination of two exponentials,

be™, t < &max,
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where a, b, ¢, d, and ey, are parameters depending on the
impact velocity. Besides being of interest per se, the knowledge
of the functional form of the distribution function may be of
importance also for the theory of granular gases, since recent
theoretical and numerical work shows that the assumption
of a fluctuating COR leads to measurable and nontrivial
hydrodynamics effects in granular systems [20].
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So far, the distribution Eq. (2) is a purely empirical result,
based only on experimental data. However, there is a lack
of theoretical interpretation of this exceptional probability
distribution. The aim of the present paper is to derive the
distribution p(¢) by analyzing the geometry of the impact in
detail. To this end, in Sec. II we relate the (global) coefficient
of restitution, which describes the dynamics of a particle to
the local impact properties for a given collision geometry,
quantified by the contact vector. The stochastic properties of
the contact vector are computed in Sec. III, and in Sec. IV
we combine both ingredients to obtain finally the distribution
function of the coefficient of restitution, &.

II. GLOBAL VERSUS LOCAL COEFFICIENT
OF RESTITUTION

We consider a rigid particle consisting of a large central
sphere of radius o and mass M which is covered by a large
number, N >> 1, of tiny asperities at uniformly distributed
random positions on its surface [19]. Each of the asperities
is represented by a sphere of radius p <« o and mass m. It
is further assumed that the coverage of the surface of the
central sphere is sufficiently dense such that each contact of
the particle with a plane occurs through one of the asperities.
For typical values p/o < 1074, thus m/M < 1072 and N ~
10%, we can safely neglect the contribution of the asperities
to the mass and the moment of inertia of the particle. For the
subsequent analysis, we chose the coordinate system with the
origin located at the center of the central sphere and the x-y
plane being in parallel to the plate.

The particle is dropped from a certain height and collides
with a horizontal hard plate. We describe the inelastic collision
of the particle with the plate as an instantaneous event leading
to a change of linear and angular momentum of the particle
due to the collisional impulse P:

A‘;E‘-}/—‘-}Zﬁﬁ,
| (3)
AQ=Q —Q=—(F x P),

where V and V' describe the pre- and postcollisional linear
velocity of the particle, 2 and Q' are the pre- and postcol-
lisional angular velocities, J is the moment of inertia of the
particle, and 7 is the contact point, located at the surface of
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FIG. 1. Sketch of the collision of a rough particle with a flat
surface. Only the asperity which is in contact with the plane is shown.

one of the asperities. The geometry of the impact is sketched
in Fig. 1.

The microscopic impact velocity, that is, the velocity of the
point where the asperity touches the floor at 7, is defined by

=@ -mi+@ - 1) =V+QxF, 4)

where 72 and 7 are unit vectors in the plane pointing in directions
normal and tangential to the velocity of the contact point.
The inelastic nature of the collision of the particle with
the plate is taken into account by the microscopic coefficients
of normal and tangential restitution, €, and ¢;, such that the
postcollisional velocity at the point of contact is given by

-

v n = —e,(V-0),
. . 4)
vt =¢(v-1).
The third component of v which is perpendicular to both 7 and
f does not change during the impact.
The change of the microscopic impact velocity of the
particle is, therefore,

V=0 =—(146)V-m)i+(—14+¢)@-0)f
= AV+AQ xF. (6)

The second line of Eq. (6) relates the change of the microscopic
velocity at the point of contact to the change of the macroscopic
velocities of the particle. By substituting AV and A from
Eq. (3) into the right-hand side of Eq. (6), we obtain the
following system of linear equations describing the impact:

—(1 4 €)@ - i + (=1 4+ &)@ - )
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Using Egs. (7) and (3), one can compute the dynamics of
the bouncing particle provided the position of the asperity
7. and the local coefficients of restitution, €, and ¢, are
given. Consequently, by means of Eq. (1), we can compute
the macroscopic coefficient of restitution, &, as observed in
experiments. Obviously, as the position of the asperity at the
instant of the impact is random, v and thus & are fluctuating
quantities, too. Consequently, the stochastic properties of the
coefficient of normal restitution, &, are intimately related to
the distribution of the asperities at the surface of the particle.

While a priori we do not know the value of ¢, for a concrete
geometry at impact the value of the microscopic coefficient of
restitution is less problematic: Assuming viscoelastic material
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FIG. 2. (Color online) Definition of the variables describing the
impact geometry.

properties, the coefficient of restitution of a smooth body
impacting a plane is given by [21-23]

&) =14 hiarvm, 8)
i=0

where h; are analytically known, universal (material-
independent) constants, and « is a function of particle mass,
size, and material properties (see [23] for the numerical values
of h; and o). Even though Eq. (8) is analytically known, any
truncation of the infinite sum in Eq. (8) leads to divergence,
€, — *o0, therefore, for practical reasons, here we prefer the
convergent Padé expansion of Eq. (8) of order [1/4] [24,25]:

14+ cv,

_ pl/2.1/10
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14 biv, + byv2 4+ byv3 + byvt” p
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with the universal constants ¢; = 0.501 086, b; = 0.501 086,
by = 1.15345, b3 = 0.577977, and by = 0.532 178. The ma-
terial constant 8 = 0.0467 was used, corresponding to the
experimental values by Montaine et al. [19] for the collision of
stainless-steel spheres. This approximation assures the correct
limit, lim,_, , €,(v) = 0.

The microscopic coefficient of tangential restitution, €,, de-
pends on both bulk material properties and surface properties.
Therefore, €, cannot be analytically derived from material
properties, except for the limiting case of pure Coulomb
friction, e.g., [26,27]. Here we assume €, = 1, that is, elastic
no-slip interaction in the tangential direction.

III. DISTRIBUTION OF THE CONTACT VECTOR 7

A. Components of the contact vector

To compute the stochastic properties of the coefficient
of normal restitution, ¢, through Egs. (7), (3), and (1), we
consider the statistical distribution of the vector 7 indicating
the point where the particle contacts the plane through one of
its asperities; see Fig. 1. From geometry it is clear that the
contacting asperity is the one which is closest to the south pole
of the large central sphere; see Fig. 2.

Due to the random orientation of the particle and the random
distribution of the asperities on its surface, the components
of 7 = (ry,ry,r;) obey probability densities which will be
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computed in this section. The components r, and r, can be
expressed by the length of the projection of 7 to the plane,

ryy = ¥r; +r}, and the angle ¥ (see Fig. 2) such that

ry =TIy, COSY, Fy =ry,sind. (10)

The remaining coordinate, r,, follows from r,, via

ro=—Je* =% —p. (11

In the following subsections, we compute the probability
densities of 7y, cos ¥, and sin © and derive then the probability
densities of the components of 7.

B. Probability density of 7,

The probability of finding & homogeneously distributed
asperities in a small circle of area A obeys a binomial
distribution which for N > 1 may be approximated by a
Poisson distribution

e—AA (A.A)k
k! ’

where A = N /(47 0?) follows from equating the total number
of asperities N on the surface of the central sphere with the
expectation value of k due to py(4mo?). We specify A as
the area of a circle with radius r,; see Fig. 2. Note that for
computing A we approximated the area of the cap of the sphere
by the area of a flat circle of the same radius. For the numerical
values of N = 10° and o = 3 x 1073 m, the resulting error is

pr(A) = (12)

negligible. We obtain the cumulative probability, P, _, to find
at least one asperity in a circle of radius r,,,
P, (1) =1—exp(=Amt®), >0 (13)

and by differentiating we obtain the probability density for the
distance of the closest asperity to the south pole:

pr., (1) = 2mthexp(—rmt?), t>0. (14)

Note that the probability for a direct contact of the central
sphere with the plane is negligibly small. It corresponds to
the probability of finding no asperity in a circle of radius R,

around the south pole Wlth (0 + p)* = R2+ (0 — p)?, that is,
R, =2./0p ~ 7 x 10~* m. According to Egs. (12) and (13),
this probability is exp(—Am R?) ~ 1071%, which means that
the corresponding event is extremely unlikely to occur.

C. Angular location of the contact point in the plane

Given the particle contacts the plane at the distance r,,
from the z axis, the possible locations of the contact point
are on a circle of radius r,, where no angular orientation, ¥,
is preferred. Thus, the angle is homogeneously distributed
in the interval ¢ € [0,27). Consequently, the cumulative
probabilities of sin ¢ and cos ¥ read

cosz?(t) = P(COSﬁ )
=1— [P €0, arccost])
+ P(% € [2m — arccost,2m])]

1
=1 — — arccost?, (15)
b4
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smz?(t) = P(Slnl9 t)

1 — P(¥ € |arcsint,m — arcsint]) if ¢t >0
={1—[P@ €[0,7 — arcsint])
+P(¥ € [2m + arcsint,2m])] if t<0
1
= 1 — — arccos(?). (16)
T

Differentiating Egs. (15) and (16), we obtain the probability
densities

1 1
Deoso (1) = ;m,
] 1 (17
sin (t) R ——————
Psinv T Jl =1

D. Joint probability distribution for the components
of the contact point

According to Eq. (10), the components of 7 are products of
ryy and cos® or sind, respectively. Since the distributions
of ry, and ¥ (and thus cosv and sin) are statistically
independent [28], we obtain the distribution of the product
via

prx(t) = Pr,(f) = Pry, cosp(t) = Pry, sino (£)

1 t
= | |pc0<19(('I)pr” ; dq

77'[)Lex Am
= -[ 1 \p/[17( ) ] |q|71 dCI for

0 otherwise

Zrew[ ()]

£>0

fl = dg for t <0
== 2
fol —qzmxp[ M(;) ] fort >0

1-¢*
— \/Xe—n}ntz. (18)

We see that the probability density distribution for r, and r, is
anormal distribution. Our main assumption is the modeling of
the particle’s surface by an ideal central sphere overimposed
by a large number of identical and semispherical microscopic
impurities. Both assumptions are essential for the analytical
calculations. Whereas we do not believe that the concrete shape
of the microscopic asperities is of importance, we are aware
that for more realistic modeling the asperities should vary
in size, possibly in a hierarchical way. Micromechanically,
different sizes would lead to modifications of the contact
geometry. In particular, smaller asperities would be screened
by larger ones, which leads, effectively, to a reduction of
the density of the asperities since not all of them can come
into contact with the plane. While this reduction may lead to
quantitative changes, for the functional form of the distribution
of the coefficient of restitution it would be essential that the
distribution p,_is Gaussian, which was checked by means of
simulations.

To verify the obtained distribution functions for the compo-
nents of the contact vector, Eq. (18), we performed a simulation
of an elastic particle covered by N = 10°, o =3 x 1073 m
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FIG. 3. Histograms of the x and y components of the contact vec-
tor as found in numerical simulations together with the corresponding
analytical results for the density distributions due to Eq. (18).

and p = 6.5 x 1077 m. The particle was released at random
orientation and the statistics of the components of the contact
vector were recorded. The numerical and analytical results are
compared in Fig. 3.

IV. DISTRIBUTION OF THE COEFFICIENT
OF NORMAL RESTITUTION

To obtain the distribution of the coefficient of normal
restitution, we use Eq. (3) together with the definition Eq. (1),

eo_1_LE (19)
My .n
The impulse P is found by solving the system Eq. (7):
Ix Ty
P=—-K(V,Q)M ryr; (20)
I+ r?
with
K85 = [1 + o) LS =)o)

P2+
with the components of the precollisional angular velocity
Q = (2,,9,,92;) and the velocity at the contact point in the

J
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z direction, V = (\7 +Qx7)-fiand I = J/M. Inserting in
Eq. (19) yields

K(V,Q,7)(1 +1?)

e=—-1+ - (22)
V.n
The moment of inertia of the particle is
2.9
J = §M 0. (23)

The solution of Eq. (7) for the postcollisional angular
velocity reads

Ty
Q' =Q+KWV.QH| —r | (24)
0
The postcollisional linear velocity reads
Ix Tz
V=V -KV,Q)| rr | (25)
I+r?

For the computation of ¢ according to Eq. (1), only the
orientation of the z axis of the coordinate system is important.
The orientation of the y and z axes in the plane is arbitrary and
can be chosen for each collision such that 2, = —,, which
simplifies Eq. (21). The fluctuating quantity r,r, has mean zero
and a very small variance, which suggests the approximation
re +ry (2 +rH'? =r,,, whose distribution is known,
Eq. (14). Then Eq. (21) adopts the form

(‘7 : ’_i + Qx T xy)
P24
From geometry (see Fig. 2; o > p) it is clear that r, has a
much smaller fluctuation range than r, and r,; therefore, r,

can be assumed constant with 7, = o + p.

With these approximations, K and thus & [Eq. (22)]
contain only a single fluctuating quantity, which is r,,.
Hence, the distribution of & = g(ry,) can be calculated by
the transformation

K(V,Q.7) =[1+e,0)] (26)

dg='(1)
dt

where p,  is the probability density function of r,y. From
Egs. (22) and (26), we obtain

pe(t) = py, [g7' ()] 27)

_ wAMOQ + FOIQLA() + f(1)S2,] malh + f())
Pl == 2V2(L+ 17 F(1) = [_ W] @
f@)= \/[1 + €,(V]QQ2 + 4V2[—12 + te,(v) — t + €,(W](I +r2), (29)
h(t) =2(1 + )V + QQ2, (30)
0 =[1+ eI +72). (31)

We checked the result of Eq. (28) numerically for a particular
set of parameters, V. =v=13 2, Q, =02, N=10

(

asperities, 0 =3 x 1073 m, and p = 6.5 x 1077 m, and we
found very good agreement; see Fig. 4. The component 2]
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FIG. 4. Numerical test of Eq. (28) by means of Monte Carlo
simulations shows almost perfect agreement for the analytical and
numerical data. The lower figure shows the same data in log-scale.
For details, see the text.

can be expressed in
terms of ry:
r. Py —ry P,
1

L[ P.riry
:Qx+7|:r22+1 —r_va .

Q =Q,+

(32)

Consequently, as r, obeys a Gaussian distribution and r; is
approximately constant, €2, is Gaussian-distributed with zero
mean as well. Its standard deviation reads

(33)

Flo )
7 1V r2+1)’
where P, = MV,(—e — 1) is the z component of the colli-
sional impulse.

The result, Egs. (32) and (33), was checked by means of a
Monte Carlo simulation of 100 000 drops of a sphere covered
by 100 000 asperities; see Fig. 5. To obtain the numerical data,
we generated random values of r,, according to the probability
distribution given by Eq. (18) and ¢ according to the probability
distribution obtained via Eq. (28) and calculating 100 000
times 2, for the start values 2, =0, V=1 m/s, o0 =
3x 10 m,and p =0 x 107* m.
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FIG. 5. (Color online) The numerical test of Egs. (32) and (33) by
means of Monte Carlo simulations shows almost perfect agreement
for the analytical and numerical data. For details, see the text.

V. COEFFICIENT OF RESTITUTION FOR A ROUGH
BALL: NUMERICAL TEST

In bouncing ball experiments [19], the coefficient of
restitution of a rough ball was characterized as a fluctuating
quantity obeying an asymmetric Laplace distribution, Eq. (2).
To compare the analytical result for the probability distribution
of a rough sphere, Eq. (28) with the experiment, we perform
a corresponding Monte Carlo simulation using a particle of
radius ¢ =3 mm covered by 10° asperities of size p =
5 x 10~* mm. We assume the initial velocity, V, = V=1
m/s, and angular velocity, Q= 6, and we choose ¢ from the
analytically obtained distribution Eq. (28) to obtain V' via

10
O  0.5m/s
O 0.6 m/s|
0.7 m/s
10tk b O 0.8m/s|
% 0.9 m/s
Pl
[0)
)
10°} P o
¢ T
= ¢ |
w [0} @
10°} o |
1) 0
s 1
[0} |
p )
10"k 7 f
$ |
‘ \
¢ &
o ; - ‘ o ‘ ‘

10 L U . |
0.976 0.9765 0.977 0.9775 0.978 0.9785 0.979 0.9795 0.98 0.9805
t

FIG. 6. (Color online) Probability density of the coefficient of
restitution, &, due to Eq. (28) for different values of the impact
velocity. For the Monte Carlo simulation, we assume a particle of
size 0 = 3 mm covered by 10° asperities of size p = 5 x 107 mm.
The distribution is approximately Laplacian (see exponential fits, full
lines) and shows good agreement with the experimental data; see
Fig. 4 in Ref. [19].
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Eq. (1) and we randomly generate 2, according to Egs. (32)
and (33) and update the impact velocity using Eq. (25).
This procedure is iterated until the linear velocity decreases
to 0.1 m/s. This process corresponds to the bouncing ball
experiment [ 19]. From the statistical data obtained by repeating
the process 107 times, we can draw the histogram for the
coefficient of restitution, ¢. Figure 6 shows five histograms
of ¢ for different impact velocities. The resulting probability
density is approximately an asymmetric Laplace distribution
of the form Eq. (2). Comparison with Fig. 4 in Ref. [19] shows
good agreement with the experimental data.

VI. CONCLUSION

The coefficient of restitution (COR) describing the dissipa-
tive interaction of granular particles is of great importance
for the physics of granular matter. It is the foundation of
kinetic theory of granular gases and rapid granular flows
based on the Boltzmann equation, e.g., [29], and thus granular
hydrodynamics, e.g., [30]. Moreover, event-driven molecu-
lar dynamics of granular systems is based on the COR.
Therefore, a profound knowledge of the properties of the
COR is a necessary prerequisite for the adequate description
of dynamical granular systems. In virtually all publications
so far, it is assumed that the COR is either a material

PHYSICAL REVIEW E 89, 022205 (2014)

constant or a deterministic function of the material and system
characteristics and the impact velocity. This assumption is in
contrast to experimental results, e.g., [13—18], which show
that even tiny surface textures, that is, even weak roughness,
cause significant scatter of the COR, which suggests that
the COR is a fluctuating quantity. These fluctuations have
been investigated in large-scale experiments [19] to obtain the
probability density for the COR of almost smooth particles,
which was reported to be of asymmetric Laplacian shape.
Based on this experimental result, it could be shown [20] that
the fluctuations of the COR have a measurable influence on
the kinetic properties of granular gases.

So far, the Laplacian shape of the probability density was a
conjecture based on experimental observations and computer
simulations presented in [20]. Considering the statistical
properties of the particle’s surface at the region of contact,
the present paper shows theoretically that this conjecture is
justified and that the origin of the fluctuations is indeed the
microscopic roughness of the surface of the particles.
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