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Zig-zag networks of self-excited periodic oscillations in a tunnel diode and a fiber-ring laser
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We report numerical evidence showing that periodic oscillations can produce unexpected and wide-ranging zig-
zag parameter networks embedded in chaos in the control space of nonlinear systems. Such networks interconnect
shrimplike windows of stable oscillations and are illustrated here for a tunnel diode, for an erbium-doped fiber-ring
laser, and for the Hénon map, a proxy of certain CO2 lasers. Networks in maps can be studied without the need
for solving differential equations. Tuning parameters along zig-zag networks allows one to continuously modify
wave patterns without changing their chaotic or periodic nature. In addition, we report convenient parameter
ranges where such networks can be detected experimentally.
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I. INTRODUCTION

The complex behavior of simple dissipative systems with
a small number of degrees of freedom has been intensively
studied in a variety of fields. For many decades, the great
interest has been to investigate mainly the structure of the
phase space of flows, with particular emphasis on the possible
transitions from order to chaos and a plethora of instabil-
ities associated with these transitions [1–3]. More recently,
extensive numerical simulations have revealed unexpected
regularities in a complementary setting, namely, in the control
parameter space of systems as diverse as electronic circuits,
laser systems, and modulational interactions in a plasma,
in chemical and biophysical oscillators, and in many other
paradigmatic flows covering a large spectrum of practical ap-
plications [4–21]. Such regularities emerged while attempting
to classify systematically all collective oscillations supported
by the aforementioned applications.

As an example of a wide-ranging regularity in parameter
space we mention the infinite alternation of spirals of chaos
and of periodicity which emanate from certain periodicity
hubs, namely, from exceptional focal points ubiquitous in the
control space of some systems [8]. In this alternation, each
spiral corresponds to a certain periodic phase characterized
individually by an infinite cascade of periodic waveforms
specific to it which evolve and get continuously more complex
when parameters are suitably changed along the spiral towards
its focus. Their period seems to accumulate to a specific value
near the focal point while the number of peaks (local maxima)
in each period seems to grow without bound, diverging as one
approaches the focal point more and more [8,9]. Knowledge of
such infinite networks of periodic phases has a direct practical
application. Since changes between spirals correspond to
changes between distinct families of oscillatory wave patterns,
spiral networks provide a unique possibility for selectively
switching from one family of patterns to another.

The aim of this paper is to report numerical evidence show-
ing that regular oscillations in nonlinear systems can emerge,
forming a novel kind of wide-ranging network, namely, certain
zig-zag networks of periodic phases embedded in chaos. The
nodes composing such networks are “shrimps” [22–26], i.e.,
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FIG. 1. (Color online) Schematic representation of the tunnel
diode circuit where zig-zag networks were detected. This circuit
leads to the dissipative flow of Eqs. (5)–(7). The voltage applied
to the diode is denoted by U . Dashed lines are used to represent the
parasitic capacitance C1.

the complex mosaic formed by periodic and chaotic windows
shown below in Fig. 5(d), while the edges are shrimp legs.
We describe zig-zag networks explicitly for a tunnel diode,
a solid-state device, for an erbium-doped fiber-ring laser, and
for the Hénon map, a system that describes well certain driven
CO2 lasers [10,27,28]. In this latter example, the network
interconnects hitherto unexplored islands characterized by
relatively high periodicities and has the significant advantage
of providing a framework for studying networks without the
need for solving differential equations. For each example, we
specify convenient parameter windows that should be helpful
in locating networks experimentally. We start by describing
networks found in the electronic circuit with a tunnel diode. We
use the known configuration (Fig. 1) considered in pioneering
works by Pikovsky and Rabinovich [29–31].

Before proceeding, recall that so far there are no practical
mathematical tools capable of predicting hubs and spirals, their
location, their structural complexities, their phase boundaries,
and the unfolding of their intricate waveforms and their
bifurcations. Of course, there are several powerful mathemat-
ical techniques, like continuation methods and the study of
global homoclinic bifurcations, that give some insights for
some aspects of these structures in parameter space [4–6].
However, note that parameter space knowledge about hubs,

042907-11539-3755/2013/87(4)/042907(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.042907
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about periodic phases with arbitrarily high periods, and about
chaotic phases needs to be extracted in an independent way, via
numerical simulations of the corresponding flows, particularly
in new scenarios dealing with interesting and unexplored
phenomena that are known not to be at all associated with
homoclinic bifurcations [7].

II. THE FLOW OF THE TUNNEL DIODE CIRCUIT

According to Kirchhoff’s laws, the flow defined by the
self-excited (autonomous) oscillator with the tunnel diode is

V − U = rI + L
dI

dt
, (1)

−I = −gV + C
dV

dt
, (2)

I = F (U ) + C1
dU

dt
, (3)

where I denotes the current through the inductance, U is the
voltage across C1, and V is the voltage across C. With the help
of the voltage W ≡ V − rI between L and r , introducing the
convenient change of variables I = (x + 1)I0, U = (z + 1)U0,
y = (W − U0)/(ωLI0), and τ = ωt , where

ω ≡
√

1 − gr

LC
, (4)

and replacing F (U ) by f (z), one finds the following handy
adimensional equations for the flow generated by the diode:

dx

dτ
= y − δz, (5)

dy

dτ
= −x + 2γy + αz + β, (6)

μ
dz

dτ
= x − f (z), (7)

where the five parameters denote the following combinations
of reactances and conditions:

δ = U0

ωI0L
, 2γ = gL − rC

ωLC
, α = rU0

ω2L2I0
, (8)

β = −1 + gU0

ω2I0LC
= α − 1 + 2γ δ, μ = ωC1U0

I0
. (9)

These expressions show that specific values of δ,γ,α,β, and
μ may be conveniently reached in several different ways by
suitably combining the reactances and conditions involved.
This clearly shows that all circuit elements are equally
important for the dynamics, not just the tunnel diode, the
nonlinear element.

Equations (5)–(7) coincide with the equations investigated
by Pikovsky and Rabinovich [29–31]. However, our equations
contain ω2 = (1 − gr)/(LC) instead of the approximate result
ω2 = 1/(LC). Both sets of equations agree in the limit gr � 1.
For simplicity, following Pikovsky and Rabinovich [29–31],
we assume the characteristic function of the tunnel diode in
Eq. (7) to be a cubic function, namely, f (z) ≡ z3 − z.

The flow of the tunnel diode was investigated previously
by Carcasses and Mira [32]. However, these authors used a
Poincaré surface of section to associate a two-dimensional
diffeomorphism T to the differential equations and studied
qualitatively bifurcations not of the flow but of the mapping T

as seen in the μ × β parameter plane. Here, we consider the
bifurcation structure of the flow itself, Eqs. (5)–(7), not of an
approximate Poincaré proxy.

III. ZIG-ZAG NETWORKS IN THE TUNNEL DIODE

Figure 2 shows three high-resolution stability diagrams
classifying the dynamical behaviors present in the diode
circuit. A glance at Fig. 2 is enough to convince one that
periodic and chaotic oscillations are sprinkled in a rather
complex way in the γ × δ control parameter plane. First, one
realizes that the control plane is subdivided macroscopically
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FIG. 2. (Color online) Lyapunov phase diagrams for the tunnel diode circuit, Eqs. (5)–(7). (a) Global view of the control space. The right
corner of the upper box contains several zig-zag networks, shown magnified in Fig. 3. (b) Enlargement of the lower box in (a), illustrating a
large anticlockwise spiraling network emanating from the focal hub indicated by the arrow. (c) Enlargement of the upper box in (a) showing
clockwise spiraling networks, two of them with hubs indicated by arrows. The darker (pink) stripe on the top of (a) and (c) marks divergent
solutions. Here α = −0.013, β = 0, μ = 1.0. Each individual panel displays 2400 × 2400 = 5.76 × 106 Lyapunov exponents.
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into two distinct phases, periodic and chaotic, which have
rather complicated shapes and boundaries. Before describing
the diagrams individually, we first say a few words about how
they were computed.

Our stability diagrams were obtained by solving numer-
ically Eqs. (5)–(7) with a standard fixed-step fourth-order
Runge-Kutta integrator and using the solutions obtained to
compute all three Lyapunov exponents of the system according
to the method of Wolf et al., as described in Ref. [23], and
plotting the largest nonzero exponent, following a standard
procedure described in detail elsewhere [9]. For each param-
eter point on a 2400 × 2400 grid of points we scanned the
phase space, recording all stable asymptotic oscillations. Such
classification is a rather demanding computational task that
was performed with the help of a SGI Altix cluster made of
1536 AMD Opteron processors running at 2.3 GHz together
with software that we developed in house specifically for
this purpose. As is well known [1], Lyapunov exponents are
useful indicators capable of discriminating the nature of the
asymptotic oscillations, i.e., discriminating between periodic
oscillations (characterized by negative exponents) and chaos
(positive exponents). As usual for nonlinear flows, the diode
displays multistability, i.e., for a given set of parameters it is
possible to find several distinct stable periodic and/or chaotic
oscillations, depending on the initial conditions [1]. In such
cases, we selected the color to be plotted so as to maximize
the phase of periodic oscillations and the phenomena of main
interest to us, as discussed below.

Figure 2(a) shows a large portion of the diode control space.
It contains two boxes which are enlarged in Figs. 2(b) and
2(c). These enlargements serve to show where the zig-zag
networks are located and to illustrate a nice by-product of the
diode circuit: its control space displays several large groups of
nested spiral networks and hubs of the type mentioned in the
Introduction, not just single spirals as known so far [8,9]. The
discovery of a circuit with several large spirals is important

because such a circuit can help bypass the major obstruction
in the experimental and theoretical study of spirals: the fact
that known spirals are strongly distorted and compressed due
to the scales used. With hindsight, after spirals are duly located,
it is, of course, possible to search for a rescaling of the flow in
order to produce nice looking spirals. But this is a second stage
in the study. First, one needs to find the spirals, something
that can be quite difficult (not to say impossible) without
the help of extensive numerical calculations. Of course,
distortions are associated with the fact that, so far, all known
differential equations displaying spirals represent physical
phenomena; i.e., they represent real-life physical flows rather
than mathematical “normal forms” suitably constructed in an
ad hoc manner for pure mathematical investigations. Clearly,
it would be very useful to find means of divining flows with
large groups of wide spirals and hubs, particularly if based
on real-life easily accessible physical coordinates, to facilitate
both experimental and theoretical or numerical studies.

The parameter region shown in Fig. 3(a) contains a plethora
of zig-zag networks interconnecting families of periodic
oscillations. The largest such network connects the wide
shrimp clusters labeled P,Q,R, and S. Another zig-zag
network exists inside the white box, shown magnified in
Fig. 3(b), where its first few alternations are labeled A,B, and
C. The basic signature of zig-zag patterns is the alternation of
three shrimps, exemplified by the sequences PQR and QRS in
Fig. 3(a) and ABC in Fig. 3(b). For brevity, we call such triplets
“V connections” or “V bridges.” These connections are present
in Fig. 2 of a recent paper by Manchein et al. [33], who used
the discrete map of Carlo et al. [34] to study the distribution
of unbiased current in the ratchet transport of particles [35].

The shrimp-shaped windows of the V bridges are the
same ones that twist continuously either clockwise or counter-
clockwise, as shown in Fig. 2, to form the spiral networks
discussed in the Introduction. Originally [22–24,26], such
shrimps were found to form infinite sequences of essentially
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FIG. 3. (Color online) Examples of V connections in the control space of the tunnel diode. (a) A zig-zag pattern PQRS formed by “gluing”
the V connections together. The zig-zag continues beyond S, but the additional alternations are too small to be seen in this scale. The upper
dark (pink) background denotes unbounded solutions (divergence) and is riddled with shrimps, e.g., Q and S. (b) Magnification of the V
connection ABC in the white box in (a). One of the legs of R allows passing between R and B via continuous parameter changes. Here
α = −0.33,β = 0,μ = 1.0.
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parallel structures, apparently completely disconnected from
each other. Subsequently, 15 years later, these windows were
discovered to emerge interconnected, forming continuous
spiral networks [8]. In Fig. 3(b), however, shrimps A and
C are clearly interconnected with B, forming a structure that
resembles an upside-down V. From additional magnifications
of specific regions of Fig. 3 (not shown) it is possible to
recognize the unfolding and interconnection of several V
bridges that form a long chain, a zig-zag network. In such
networks, however, each successive V bridge gets strongly
compressed, making it difficult to assert whether the zig-zag
network is infinite or not.

IV. BRIDGES IN A LASER AND IN THE HÉNON MAP

The purpose of this section is to show that the same
connections described above exist also in the flow governing
an erbium-doped dual-ring fiber laser and in a celebrated
textbook example of the discrete-time model, the Hénon map.
We start by computing stability diagrams for an erbium-doped
dual-ring fiber laser with the lasing fields in the two rings
frequency locked through a coupler c0 with a phase change of
π/2 from one ring to the other. In this configuration, the laser
equations for the fundamental system are [3,36–38]

dEa

dt
= −(Ea + c0Eb)ka + gaEaDa, (10)

dEb

dt
= −(Eb − c0Ea)kb + gbEbDb, (11)

dDa

dt
= −(

1 + Ipa + E2
a

)
Da + Ipa − 1, (12)

dDb

dt
= −(

1 + Ipb + E2
b

)
Db + Ipb − 1, (13)

where Ea and Eb are the lasing fields and Da and Db are
the population inversions in rings a and b, respectively. The
parameters ka,kb,ga , and gb represent the decay rate and
the gain coefficient of lasing fields a and b, as indicated.
Ipa and Ipb represent pump intensity in the respective fiber
rings. Note that this laser model contains cubic nonlinearities,
similar to the nonlinearity present in the tunnel diode flow.
As for parameter values, in an interesting paper, Zhang and
Shen [38] detected hyperchaotic dynamics for the following set
of parameters: ka = kb = 1000,c0 = 0.2,ga = 10 500,gb =
4700, parameters that for simplicity we adopt here. For them
we computed stability diagrams as a function of the pump
intensities Ipa and Ipb.

Figure 4 illustrates a typical Lyapunov stability diagram
obtained for the laser where, as before, periodic and chaotic
laser oscillatory phases are discriminated by the colors of
their exponents. Inside box A in this figure it is possible
to recognize the characteristic V bridge discussed above.
Several other interconnections like this one exist in the system.
We also computed several additional diagrams (not shown) for
a number of parameter combinations “centered” around the
above ones. Such simulations showed that the laser phases
are robust against parameter fluctuations and that Fig. 4
is representative of the distribution of periodic and chaotic
oscillations in the laser. The main effect of changing the above
parameters is to produce small shifts of the structures seen
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FIG. 4. (Color online) Lyapunov stability diagram showing V
connections for an erbium-doped fiber-ring laser (inside box A). After
shrimps, the cuspidal and rounded periodicity regions seen in box B
are the most frequently observed shapes of periodicity windows.
Box C is rich in complicated structures that are difficult to classify
systematically. This diagram displays 2400 × 2400 = 5.76 × 106

parameter points.

in the stability diagram as well as changes of their relative
areas [3].

As a curious byproduct, note the region delimited by
box B in Fig. 4. In its lower right corner one finds a laser
phase with the shape of a sharp cusp and, to its left, a large
rounded phase. This pair of structures appears profusely in
the stability diagram. In fact, after the ubiquitous shrimps,
these rounded and cuspidal phases are the structures most
frequently observed in flows and maps. Their detailed structure
has not been studied completely so far, although some
results are available [39]. Box C contains a huge number of
interesting periodicity phases with rather complex structures.
They obviously deserve to be better investigated.

Is it possible to find V bridges in simple discrete-time
systems, i.e., in mappings? This possibility is useful because it
would allow the investigation of parameter networks without
the need for solving differential equations, thereby avoiding
the familiar errors associated with numerical integrations. As
already mentioned, the ratchet map of Carlo et al. contains
V bridges [33,34]. With no difficulty, we found several V
connections in the very first map where we looked for them,
namely, in the Hénon map, the paradigmatic multidimensional
dissipative system [22–26],

(x,y) �→ (a − x2 + by,x) ≡ Ha,b(x,y). (14)

As in Ref. [22], Fig. 5(a) shows a stability diagram of the
most relevant portion of its control parameter space. For each
individual k-periodic orbit we also determined the trace τ of
the Jacobian of Hk

a,b, the kth composition of the map. Then,
instead of using a solid color to paint the whole periodic phase,
we partitioned it into two sectors. When τ > 0, we represented
the period using the colors in the color bar, using black to paint
the periodic portion where τ < 0. This artifact increased the
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FIG. 5. (Color online) Illustration of V connections in the Hénon map. (a) Global view showing shrimps and complex structures
embedded in the chaotic white background. The darker (pink) background denotes divergence. The periods are as indicated in the color bar.
(b) Magnification of the box in (a) showing a V connection formed by three period-11 shrimps labeled A,B,C. The box contains additional
period-22 V connections which are too small to be visible at this scale. Their “heads” [22,23] are given in Table I. The three panels in the
bottom row display magnifications of shrimps (c) A, (d) B, and (e) C with their heads marked by magenta dots, defined in Table I. (d) shows a
shrimp in its pure state, i.e., in a state where it is trivial to see where its chaotic phase ends, something not recognizable in (c) or (e) (see text).
Each panel displays the analysis of 2400 × 2400 = 5.76 × 106 parameter points.

information content of the diagrams by displaying the inner
structure of each periodicity cell, analogous to plotting the
“multiplier” of two-parameter one-dimensional maps [23]. As
seen from Figs. 5(c)–5(e), the “center” of each periodicity
window then becomes visible (compare with Fig. 3 of Ref. [22]
or Fig. 2(b) of Ref. [26] where centers cannot be seen).

A few V bridges of the Hénon map occur inside the black
box in Fig. 5(a), magnified in Fig. 5(b). In this figure, the
most easily visible bridge is formed by shrimps A,B, and C,
shown in detail in Fig. 5(c)–5(e). Noteworthy in Fig. 5(b) is the
boundary between the white background, representing chaos,
and the darker (pink) background, representing unbounded
oscillations (divergence). This background of divergence can
be conveniently used to display shrimps in their “pure” state:
in Fig. 5(d) it is trivial to see where the chaotic phase of
shrimp B ends. while in Figs. 5(c) and 5(e) this transition
cannot be identified because of the continuous transition to the
regular chaotic phase present in the background. Moving out

from shrimp B has catastrophic consequences, with the system
losing stability and moving to the attractor located at infinity
(divergence), instead of starting to oscillate in a new chaotic
trajectory, which happens when moving out from either shrimp
A or C.

In addition to the V bridges described, the Hénon map
contains a large number of other connections with rather
complex forms that are difficult to classify and that are
still awaiting a systematic study. The paper of Lorenz [26]
may be regarded as a step in this direction. In the Hénon
map, the number of complex interconnections is so great
that one has the impression that, in the end, all periodicity
clusters might in fact compose just a huge single network of
interconnected domains. This means that by suitably selecting
parameters one could navigate around the whole network,
moving from one periodic oscillation to another, without ever
needing to cross the large sea of chaos densely surrounding
the network everywhere. This is a remarkable and potentially
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TABLE I. Coordinates (a,b) and one orbital point (x,y) near
the “head” of the period-11 shrimps, indicated by magenta dots in
Figs. 5(c)–5(e), forming the V bridges labeled A,B, and C. The four
additional points are from V connections inside the box in Fig. 5(b).

Period a b x y

11 1.6005 0.181 45 1.395 209 3 0.002 985 5
11 1.7005 0.189 375 1.480 007 9 0.005 699 4
11 1.620 75 0.164 91 1.430 728 2 0.004 034 9
22 1.580 38 0.186 696 8 1.371 390 7 0.001 859 5
22 1.595 016 7 0.187 479 8 1.384 181 7 0.002 417 5
22 1.581 413 0.186 118 5 1.372 909 9 0.001 916 4
22 1.586 349 5 0.186 811 7 1.376 812 4 0.002 103 8

very useful property of parameter networks of any possible
shape.

One may wonder how complex connections and wide
parameter networks could have remained unnoticed despite
the ever-flowing deluge of papers devoted to multidimensional
maps. A plausible explanation lies in the relatively high periods
of the orbits associated with V bridges, a regime that still
remains largely unexplored. A detailed investigation of V
bridges in the Hénon map together with their metric properties
and scalings is presented elsewhere [19]. While it seems likely
that global bifurcations lurk behind the V bridges since they
appear in systems having rather distinct properties, it seems
too premature to try to explain their origin before performing
a thorough investigation of these systems.

V. CONCLUSIONS AND OUTLOOK

We found that tunnel diodes produce unexpected and rich
dynamical behaviors such as V bridges and zig-zag networks.
The circuit with a tunnel diode is particularly well adapted for
experimental investigations not only of the zig-zag networks
but also of the more familiar spiral networks because it
contains surprisingly large and relatively undistorted spirals
(Fig. 2). Zig-zag networks seem to be rather ubiquitous since
they can be found with no special effort in other systems
like the erbium-doped dual-ring fiber laser and the Hénon
map. Figure 2 provides an example of an unexpected system
displaying spirals that twist continuously both clockwise and
counterclockwise in control space.

Knowledge of parameter networks allows one to effectively
control the dynamics in a predictable and stable (permanent)
way. Recall that popular control techniques rely on the
application of series of infinitesimal parameter changes which
are unable to target preassigned and stable behaviors [1]. Such
procedures lead to random final destinations and require the
permanent application of “perturbations” to the system in order
to maintain operation of the unstable random destination. In
sharp contrast, parameter networks can be used (i) as guides
to implement parameter changes of any arbitrary size, (ii) to
move to any preassigned state, and (iii) to perform changes
only among stable oscillations, either with a single parameter
jump or, if needed or desired, using sequences of controlled
parameter changes.

We hope this work will trigger research about parameter
networks both experimentally and theoretically. Possible
theoretical directions involve developing tools to anticipate
where networks might be located in stability diagrams and,
more importantly, which type of nonlinearities might produce
them. Also of interest is to investigate what happens with the
symbolic coding of orbits belonging to V connections (which
contain several cusps) when following closed paths around
them. It is known that in some regions of control space, cir-
culations around closed parameter paths involve unavoidable
ambiguities in the symbolic coding [25]. At present, we are
still waiting for the development of a mathematical framework
capable of addressing these types of problems. The origin
and structural properties of parameter networks in dynamical
systems are far from being understood except for a growing
number of explicit examples. Zig-zag networks made of V
bridges provide a new and potentially fruitful addition to
the arsenal of networks allowing one to prospect the global
organization of stable oscillations so vital for applications.
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