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Some dynamical properties for a dissipative time-dependent Lorentz gas are studied. We assume that
the size of the scatterers change periodically in time. We show that for some combination of the control
parameters the particles come to a complete stop between the scatterers, but for some other cases, the
average velocity grows unbounded. This is the first time that the unlimited energy growth is observed in
a dissipative system. Finally, we study the behavior of the average velocity as a function of the number
of collisions and we show that the system is scaling invariant with scaling exponents well defined.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The process in which a particle acquires unlimited energy is
called Fermi acceleration. As an attempt to explain the origin of
cosmic ray acceleration, Enrico Fermi [1] proposed that charged
particles could be accelerated by interactions with time-dependent
magnetic structures in the interstellar medium. Since his pioneer-
ing work many alternative models have been proposed in different
fields such as molecular physics [2], optics [3], nanostructures [4],
quantum dots [5] and many other. Additionally, different proce-
dures have been used to describe such a systems and two main
different approaches are considered, namely (i) by solving ordi-
nary/partial differential equations or; (ii) by using the so-called
billiard formalism. A billiard is a dynamical system in which one or
many non-interacting particles move freely inside a closed region
experiencing collisions with the boundary. From the mathematical
point of view, a billiard is defined by a connected region Q ⊂ R D ,
with boundary ∂ Q ⊂ R D−1 which separates Q from its comple-
ment, in such a case, the absolute velocity of the particle is con-
stant. Basically billiards are classified as (i) integrable, (ii) ergodic
and (iii) mixed. In case (i) the phase space consists of invariant
spanning curves filling the entire phase space and typical examples
are the circular [6] and the elliptical [7] billiards whose integrabil-
ity in the case of the circle comes from the angular momentum
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conservation, and the product of the angular momenta with re-
spect to the foci in case of ellipse. In case (ii) the time evolution of
a single initial condition is enough to fill the phase space and three
examples are the Bunimovich stadium [8], the Sinai billiard [9] and
the cardioid billiard [10]. In case (iii), one important property in
the mixed phase space is that chaotic seas are generally surround-
ing Kolmogorov–Arnold–Moser (KAM) islands which are confined
by invariant curves [11–21]. In particular such curves can cross the
phase plane and partition it into several separated portions of the
phase space. On the other hand, if ∂ Q = ∂ Q (t), the system has a
time-dependent boundary, it can exchange energy with the particle
upon collision and the velocity can increase or decrease depending
on the phase of the moving boundary. One of the main questions
about two-dimensional time-dependent systems is: Under which
circumstances an unlimited energy growth will be observed? In
this sense, Loskutov, Ryabov, and Akinshin [22] proposed a conjec-
ture which was later proved by Gelfreich and Turaev [23,24]. This
conjecture, known as LRA-conjecture, states that if there exists a
chaotic component in the phase space with static boundary the
introduction of a time-dependent perturbation is a sufficient con-
dition to observe Fermi acceleration. Such a conjectures has been
verified for the Bunimovich stadium [8,25], oval billiard [26], Sinai
billiard [8]. However, it has been shown very recently that the ex-
istence of a chaotic component is a sufficient but not necessary
condition the observe the unlimited energy growth, since Fermi
acceleration was also observed for the time-dependent elliptic bil-
liards (which is integrable for the static boundary) [27–32].

When dissipation is introduced into the system, a drastic
change is observed in the phase space [33–40]. Invariant spanning
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Fig. 1. Illustration of the time-dependent Lorentz gas.

curves are destroyed; the elliptic fixed points may turn into sinks
and the chaotic sea can be eventually replaced by a chaotic attrac-
tor. Each one of these attractors has its own basin of attraction.
Much attention has been devoted to dissipative systems and ex-
tensive research has been done to explain phenomena present in
different fields of science including optics [41], fluid dynamics [42]
and nanotechnology [43] among others. However, the influence of
dissipation on the average velocity/energy of time-dependent sys-
tems is still not fully understood and one of the main questions
that rises is: Is it possible to observe the unlimited energy in a
dissipative system? As we will show, the answer is not so sim-
ple and it depends on the kind of the dissipative force, and the
combination of the initial conditions and the control parameters.

We revisit the problem of a time-dependent Lorentz gas seek-
ing to describe and understand the behavior of the average velocity
for an ensemble of non-interacting particles as a function of both
the control parameters and the number of collisions of the parti-
cles with the boundary. We assume a triangular arrangement in
order to avoid particles traveling infinitely far from the scatter-
ers. We show that the system has a ergodic phase space and we
introduce time-dependent perturbation of breathing type on the
boundary. In such a case the size of the scatterers change harmon-
ically in time. Additionally, we introduce in-flight dissipation into
the system where the dissipative force is given by F = −μ where
μ is the dissipation parameter. We study the behavior of the av-
erage velocity for the parameter space and we shown that for
some combination of the initial condition and the control param-
eter the particles come to a complete stop between the scatterers.
On the other hand, for other combinations of control parameters
and initial conditions the average velocity grows unbounded. It is
important to emphasize that this is the first time that the unlim-
ited energy growth is observed in a dissipative system. For such a
case we show that the system is scaling invariant with exponents
well defined.

The Letter is organized as follows. In Section 2 we describe all
the necessary details to obtain the four-dimensional map that de-
scribes the dynamics of the system. Section 3 is devoted to the
numerical results. Finally, conclusions are drawn in Section 4.

2. The model and the map

In this section we describe the model and all the details needed
to obtain the map that describes the dynamics of the system. The
model consists of classical non-interacting particles of mass m ex-
periencing collisions with time-dependent circular scatters as can
be seem in Fig. 1. The system is described in terms of a four-
dimensional mapping T (δn,bn, | �Vn|, tn) = (δn+1,bn+1, | �Vn+1|, tn+1)

where the dynamical variable δn angular position of the particle
on the scatter; bn is the impact parameter; | �Vn| is the absolute ve-
locity of the particle after collision and tn is the time. Additionally,
we assume that the dissipative force is given by F = −μ where μ
is the dissipation parameter. In order to know the velocity of the
particle as a function of time we need to solve Newton’s equation.
Thus the velocity of the particle as a function of time is given by

∣∣ �V p(t)
∣∣ = Vn − μ(t − tn), (1)

where Vn = | �Vn|. Integrating Eq. (1) we obtain the trajectory as

r(t) = rn + Vn(t − tn) − 1

2
μ(t − tn)

2. (2)

The dynamics starts on the scatterer in the center and the par-
ticle travels in a straight line until the next collision with one of
the other 12 scatterers enumerated from zero to eleven. Moreover,
we introduce the variable l(sn) for the distance between the center
of the scatterer in the center and the scatterer hit at the collision
n + 1. l(sn) can assume the values of 4/

√
3 and 4 for even and odd

values of sn , respectively. Additionally, we assume that the size of
the scatterers change periodically in time according to

R = 1 + ε
[
1 + cos(t)

]
, (3)

where ε is the amplitude of the time-dependent perturbation.
Starting with an initial condition (δ0,b0, V 0, t0), the map that de-
scribes the dynamics of the system is obtained as follows. The
Cartesian components of R are given by

X(δn, tn) = {
1 + ε

[
1 + cos(t)

]}
cos(δn), (4)

Y (δn, tn) = {
1 + ε

[
1 + cos(t)

]}
sin(δn), (5)

where δn is the angular position which is given by δn = π/2 + θn −
arcsin(bn/R) (see Fig. 2). Since we already know the angle that the
particle’s trajectory does with the horizontal (θn + π/2) and the
position of the hit at the collision nth, we can obtain the vector
velocity of the particle that is written as

�Vn = | �V p|[− sin(θn)î + cos(θn) ĵ
]
, (6)

where î and ĵ represent the unit vectors with respect to the X and
Y axis, respectively. The above expressions allow us to obtain the
position of the particle as a function of time for t � tn:

Xp(t) = X(δn, tn) − sin(θn)

[
| �Vn| − 1

2
μ(t − tn)

]
(t − tn), (7)

Y p(t) = Y (δn, tn) + cos(θn)

[
| �Vn| − 1

2
μ(t − tn)

]
(t − tn). (8)

The index p denotes that such coordinates correspond to the
particle. In order to know the position of the particle at the (n +
1)th collision we need to solve numerically the following equation
√[

lx − Xp(t)
]2 + [

l y − Y p(t)
]2 ∼= R, (9)

where lx and l y are the X and Y components of l(sn) and this
distance is measured from the origin of the coordinates system to
the center of the sn = 0, . . . ,11 scatters at (n +1)th collision. Since
the position of the particle at the collision (n + 1)th is known, one
can easily obtain the instant of collision by evaluation tn+1 = tn +tc

where tc is the time during the flight.
The impact parameter, bn+1, which is perpendicular to the

particle’s trajectory, is obtained geometrically as can be seen in
Fig. 2(b) and it is written as
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Fig. 2. (a) Position of the particle on the boundary for each collision; (b) bn+1 on bn and θn ; Dependence of (c) θn+1 on bn+1 and θn .
bn+1 = bn − l(sn) sin

(
θn − π sn

6

)
. (10)

Since the referential frame of the boundary is moving, then,
at the instant of the collision, according to our construction, the
following conditions must be matched

�V ′
n+1 · �Tn+1 = �V ′

p · �Tn+1, (11)

�V ′
n+1 · �Nn+1 = −�V ′

p · �Nn+1, (12)

where �Tn+1 and �Nn+1 tangent and normal unity vectors, respec-
tively. The upper prime indicates that the velocity of the particle is
measured with respect to the moving boundary referential frame.

Hence, one can easily find that

�Vn+1 · �Tn+1 = �V p · �Tn+1, (13)

�Vn+1 · �Nn+1 = −�V p · �Nn+1 + 2 �Vb(tn+1) · �Nn+1, (14)

where �Vb(tn+1) = −ε sin(tn+1) is the velocity of the boundary.
Finally, the velocity at (n + 1)th collision is

| �Vn+1| =
√

( �Vn+1 · �Tn+1)2 + ( �Vn+1 · �Nn+1)2. (15)

With such a four-dimensional map we can describe the dynam-
ics of a time-dependent dissipative Lorentz gas. However, before
starting with the time-dependent model, let us consider the case
of ε = 0 and V 0 = 1. For such a case, the velocity is a constant
and the phase space is fully chaotic as can be seem in Fig. 3.
Here, colors represent collisions with different scatterers as labeled
in the figure. Therefore, according to LRA-conjecture, after the in-
troduction of a time-dependent perturbation on the boundary the
unlimited energy growth must be observed for the conservative
dynamics.

3. Numerical results

Our numerical results for the time-dependent Lorentz gas con-
sider basically the behavior of the average velocity of the particle.
We use two different procedures to obtain the average velocity,
namely, we first evaluate the average velocity over the orbit for a
single initial condition which is defined as

V i = 1

n + 1

n∑
j=0

V i, j, (16)

where the index i corresponds to a sample of an ensemble of ini-
tial conditions. Hence, the average velocity is written as
Fig. 3. Fully chaotic phase space for the time-independent case (ε = 0). Colors rep-
resent the scatterer at collision n + 1.

V = 1

M

M∑
i=1

V i, (17)

where M denotes the number of different initial conditions. We
have considered M = 200 in our simulations.

Fig. 4 shows the parameter space for the dissipative Lorentz
gas. The procedure used to construct the figure was to divide
both μ ∈ [10−4,0.05] and ε ∈ [10−4,0.07] into windows of 600
parts each, thus leading to a total of 3.6 × 105 different com-
bination of the control parameters. Starting with a fixed initial
velocity V 0 = 0.1 and randomly chose t0 ∈ [0,2π ], δ0 ∈ [0,2π ] and
b0 ∈ [−1 − ε cos(t0),1 + ε cos(t0)], we iterated Eq. (17) up to 105

for the ensemble of initial conditions and for each combination of
μ and ε we saved the last values for the average velocity. The
average velocity are coded with a continuous color scale ranging
from green-blue for these parameters where the average velocity
increased (V > V 0) and red-yellow for these parameter whose av-
erage velocity decreased (V < V 0) and eventually will come to a
complete stop between the scatterers. As one can see, even for the
dissipative dynamics, for some cases the average velocity increases
up to 30 after 105 collisions, which is 300 times bigger then the
initial velocity.

In order to confirm if the unlimited energy growth is observed
in a dissipative system, we study the behavior of the average ve-
locity as a function of the number of collisions with the scatterers
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Fig. 4. Parameter space for the time-dependent Lorentz gas.

Fig. 5. Behavior of V × n for different values of ε , as labeled in the figure and three
different initial velocities, namely V 0 = 0.1,0.2 and 0.5.

for different values of the initial velocity and different amplitudes
ε as it is shown in Fig. 5. For each initial condition we have fixed
the initial velocity, V 0 ∈ [0.1,10] and randomly chose t0 ∈ [0,2π ],
δ0 ∈ [0,2π ] and b0 ∈ [−1 − ε cos(t0),1 + ε cos(t0)]. The dissipa-
tion parameter μ were fixed as μ = 10−3. Note that, the average
velocity for all values of ε and considering small values of n re-
mains constant and then it starts to grow with the same exponent.
The changeover from constant velocity to growth is marked by a
crossover number nx which is basically the intersection between
the line of the initial plateau and the acceleration line. Addition-
ally, the behavior shown in Fig. 5 is typical in systems that can be
described by using scaling arguments. Therefore, we can propose
the following scaling hypotheses:

1. When n 	 nx the average velocity is

V ip ∝ V α
0 , (18)

where α is the exponent of the initial plateau and if it is well
defined α must be equal to one;

2. For long time, n � nx , the growth of the average velocity is
described as

V ∝ nβ, (19)
where β is the acceleration exponent;
3. The crossover number that marks the regime of growth to the

constant velocity is written as

nx ∝ V z
0ε

γ , (20)

where z and γ are the crossover exponents.

After considering the above scaling hypotheses, we propose a scal-
ing function to describe the behavior of the average velocity of the
type

V [V 0,n, ε] = λV
[
λa V 0, λ

bn, λcε
]
, (21)

where a, b and c are scaling exponents and λ is a scaling factor.
Since λ is a scaling factor, we can chose it such that λa V 0 = 1,
yielding to λ = V −1/a

0 , thus Eq. (21) can be rewritten as

V [V 0,n, ε] = V 0
−1/a V

[
1, V −b/a

0 , V −c/a
0 ε

]
. (22)

Comparing Eq. (18) and Eq. (22), we obtain α = −1/a. On the
other hand, by choosing now λbn = 1, we have that λ = n−1/b and
Eq. (21) is rewritten as

V [V 0,n, ε] = n−1/b V
[
n−a/b V 0,1,n−c/bε

]
. (23)

Comparing now Eq. (19) and Eq. (23), we obtain β = −1/b. Choos-
ing λcε = 1, we have that λ = ε−1/c . Using now the expressions
obtained for the scaling factor λ, and the two conditions for the
crossover, namely V −1/a

0 = λ = n−1/b and n−1/b = λ = ε−1/c one
can easily conclude that z = α

β
and γ = −1/cβ . Since we have

all the relationship between the exponents, in order to confirm
our scaling hypotheses we need to find their values numerically.
The acceleration exponent β , is obtained from a power law fit-
ting for the average velocity when n � nx . Thus, an average of
these values gives us β = 0.502(3). Fig. 6 shows the behavior of (a)
V̄ ip vs. V 0 and (b), nx vs. V 0. After power law fittings we obtain
α = 0.9997(4) ∼= 1 and z = 1.991(2) ∼= 2. The crossover exponent z
can also be obtained by using the previous values of the accelera-
tion exponent β and the exponent of the initial plateau α. Thus we
find z = α

β
= 1.99(1) which is in excellent agreement with the our

numerical data. Finally, Fig. 6(c) shown the behavior of nx vs. ε ,
after a power law fitting we obtained γ = −2.00(2).

A final check of the initial hypotheses and our scaling expo-
nents will be done in two steps. As one can see in Fig. 5 the
behavior of the average velocities highly depends on the initial ve-
locity V 0 and the amplitude of the time-dependent perturbation ε ,
here we have considered three different values for V 0 and four dif-
ferent amplitudes. First let us assume that the ε is fixed, therefore,
one must consider the following transformation V �→ V /V α

0 and
n �→ n/V z

0 and as it is shown in Fig. 7(a) four collapses happened,
one for each value of ε . Finally, the final collapse is done by con-
sidering the dependence of the average velocity also on ε . As one
can see in Fig. 7(b) all the curves collapse onto a single and uni-
versal plot. Such a result allow us to confirm that the system is
scaling invariant with scaling exponents very well defined. Addi-
tionally, we have shown for the first time for a two-dimensional
time-dependent billiard that the unlimited energy growth is possi-
ble even if the system is dissipative.

4. Conclusion

We have studied the problem of a classical particle experienc-
ing collisions with time-dependent circular scatterers. We have
obtained the four-dimensional map that describes the dynamics
of the dissipative system. We have studied parameter space by us-
ing the behavior of the average velocity for an ensemble of initial
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Fig. 6. (a) Behavior of V ip vs. V 0. (b) Behavior of the crossover number nx against V 0 and (c) behavior of nx vs. ε A power law fitting in (a) furnishes α = 0.9997(4) while
in (b) z = −1.991(2) and (c) γ = −2.00(2).

Fig. 7. Different curves of the V for different values of ε and different initial velocities. (a) Their initial collapse onto four different which depends on ε . (b) Their final
collapse onto a single and universal plot.
conditions and we have shown that for some combination of ini-
tial condition and control parameters the unlimited energy growth
in completely suppressed and the particles come to a complete
stop between the scatterers. On the other hand, for some other
combinations of control parameters the average velocity grows un-
bounded. For such a case, the behavior of the average energy has
been considered in the framework of scaling. Once the accelera-
tion exponent β , the exponent of the initial plateau α and the two
crossover exponents z and γ have been obtained, the scaling hy-
potheses are confirmed by the perfect collapse of all curves onto
a single universal plot. Additionally, we have shown for the first
time in a two-dimensional time-dependent billiard that the unlim-
ited energy growth is observed in a dissipative system.
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