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ABSTRACT: We investigate the structure and adsorption of
amphiphilic molecules at planar walls modified by tethered
chain molecules using density functional theory. The
molecules are modeled as spheres composed of a hydrophilic
and hydrophobic part. The pinned chains are treated as
tangentially jointed spheres that can interact with fluid
molecules via orientation-dependent forces. Our density
functional approach involves fundamental measure theory,
thermodynamic perturbation theory for chains, and a mean-
field approximation for describing the anisotropic interactions.
We study the adsorption of the particles, focusing on the
competition between the external field (due to the surface and
due to attached chain molecules) and the interaction-induced ordering phenomena.

■ INTRODUCTION
The term “Janus particles” was introduced by Casagrande1 to
describe glass spheres coated in a special manner that one of
the hemispheres was hydrophilic and the other one hydro-
phobic. Over the past two decades, Janus particles have drawn
widespread attention in different fields of nanoscience.2−12

However, a model of Janus particles can also be viewed as a
coarse-grained model of real amphiphilic molecules13−17 that
are generally composed of hydrophilic and hydrophobic parts.
The coarse-graining treats complex molecules as a sphere with
anisotropic surface properties. Despite this simplification, which
completely neglects several factors, such as relative size of
different groups, the model is capable of describing the
formation of bilayers, vesicles, and micelles.18,19 The presence
of hydropholic and hydrophobic ingredients yields a large
variety of self-assembled structures on different length scales.
These range from molecular size micelles to mesoscopic
membranes, bicontinuous foams, and lamellar phases.20−25

One of the first simple theoretical models of Janus particles
was introduced by Tarazona et al.26 There exist also other
models for Janus particles,27−29 which are, in fact, similar to the
model of Tarazona and co-workers.26 One should also mention
here about the “patchy-particle” model that has been proposed
by Kern and Frenkel30 and studied by Sciortino et al.31 The
patchy-particle model involves localized surface areas exerting
homogeneous attractive forces, whereby the core is impene-
trable. A graphical comparison of the models of Tarazona et
al.26 and Kern and Frenkel30 has been given by Rosenthal.18

A recently published paper by Rosenthal and Klapp32

employed the model of Tarazona et al.26 to develop a density
functional approach for describing amphiphilic molecules at
planar walls and inside slit-like pores. The proposed approach
involves fundamental measure theory combined with a mean-

field approximation for the anisotropic interaction. Considering
neutral, hydrophilic, and hydrophobic walls, they focused on
the problem how a competition between the surface field and
the interparticle interaction induces ordering phenomena. In
subsequent works, Klapp and co-workers19,33 applied molecular
dynamics simulations to investigate the structure formation of
amphiphilic Janus particles in the bulk phase and in slit-like
pores. The results for confined fluid were also compared with
predictions of the density functional approach. Note that refs
18, 19, and 33 also contain a detailed description of the
simulation methods.
In recent years, investigations of polymer films on solid

surfaces have become one of the most rapidly growing research
area in physics, chemistry, and material science. The reason for
such sustained growth is due to the availability of a wealth of
fundamentally interesting information in thermodynamics and
kinetics, such as long- and short-range forces, interfacial
interactions, flows, and instability phenomena.34−38 Moreover,
polymer thin films are widely used as an industrial commodity
in coatings and lubricants, and they have become an integral
part of the development process in several modern
technological applications.39−43

In our previous works, we have intensively studied several
aspects of adsorption of fluids on surfaces covered by tethered
layers. Among others, we considered how tethered layers
influence the surface-phase transitions in the case of adsorption
on a single wall, and in pores with chemically modified
walls,44−48 we studied how the solvation force between two
planar surfaces is influenced by their chemical modifications49
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and considered how chemical modification of surfaces alters
selectivity of adsorption of a binary mixture and the
chromatographic separation process.50,51 In our calculations,
we used a version of the density functional that has been based
on a combination of the fundamental measure approach and
perturbation theory of chain’s connectivity of Wertheim. In this
work, we combine the theory outlined in refs 44−48 with the
theory of Klapp et al.18,19,33 to study adsorption of Janus-like
particles on surfaces covered by tethered layers. In particular,
we investigate how the presence of the preadsorbed layer and
the interactions between segments and fluid particles influence
the structure of the fluid at the wall.

■ MODEL AND THEORY
The model of the system under study is shown in Figure 1. We
consider fluid of Janus particles in contact with a surface

covered by brush molecules. The model of Janus molecules is
the same as used in previous publications.18,26,32,33 The fluid
particles are represented by spheres with an internal degree of
freedom, that is, a unit vector, u ̂i, pointing from the
hydrophobic (attractive) to the hydrophilic (repulsive) hemi-
sphere of each particle i.

The pair interaction between two Janus particles splits into a
hard-sphere (HS) repulsion and an effective, solvent-mediated
anisotropic pair interaction (A)
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and where σ is the hard-sphere diameter. The anisotropic part
of the potential is given by
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In the above, C and λ are the energy and the size parameters of
the Yukawa potential 4, respectively. The shape of the potential
1 for three selected orientations of the interacting particles is
displayed in Figure 1. In the case of a solid line, the scalar
product (û1 − û2)·r2̂1 = 2, and the anisotropic interaction
uA(r12,û1,û2) is repulsive. For the dash-dotted line (û1 − û2)·r2̂1
= 0, while for the dotted line (û1 − û2)·r2̂1 = −2 and the
potential uA(r12,u1̂,û2) is attractive (cf. Figure 1b).
The interaction of a fluid molecule with a bare solid surface is

described by18,32
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is the hard-wall part of the potential; eẑ is the unit vector along
the axis OZ, perpendicular to the surface; and the anisotropic
potential is
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In the above, Cfs and λfs are the potential parameters. The plots
of vA(z) for three selected orientations of fluid molecules are
displayed in Figure 1d.
The surface is covered by preadsorbed chain molecules.

Similarly as in previous works,44−48 the chains are represented
by tangentially jointed M spherical beads of the same diameter,
σc. The chain connectivity is enforced by the bonding potential
between nearest-neighbor segments, Vb. This potential satisfies
the equation52

∏β δ σ πσ− = | − | −
=

−

+V R r rexp[ ( )] ( )/4
j
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j jb
1

1

1 c c
(8)

where β = 1/kT and R = (r1,r2, ..., rM) is a vector specifying the
positions of all the segments.
Each chain molecule contains one surface-binding segment,

located at its end (and indexed as j = 1), that interacts with the
wall via the potential

β δ σ− = −v z zexp[ ( )] ( /2)s1 c (9)

Figure 1. (a) Schematic representation of the system under study.
Open circles are pinned (j = 1) segments. Filled circles are free
segments. Hatched parts of the fluid particles indicate hydrophobic
(attractive) hemispheres and open parts hydrophilic (repulsive)
hemispheres. The interaction potentials between particular spherical
species are marked by thin solid (red) lines. Parts (b−d) illustrate the
fluid−fluid (part b), fluid−segment (part c), and fluid−wall (part b)
orientation-dependent interaction potentials for three selected
orientations of fluid molecules.
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where is a constant. This potential implies that the surface-
binding segments lie always at the distance z = σc/2 from the
surface. The remaining segments of the grafted molecules (j =
2, 3, ..., M) are “neutral” with respect to the surface; i.e., they
interact with the surface via a hard-wall potential

σ
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The interactions between the segments of chains, uss(r), are
modeled by hard-sphere potentials
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We allow for anisotropy in the interaction between a fluid
particle and the segment j
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In the above, Cfj and λf j are the parameters, and σf j = (σ + σc)/
2. Figure 1c illustrates the behavior of the anisotropic part of
the fluid−segment potential for three selected orientations of
fluid particles.
To proceed, we introduce the notation, ρ(c)(R) and ρ(r,ûf),

for the density distribution of chains and of fluid species,
respectively. The theory is constructed in terms of ρ(r,ûf), the
density of particular segments of chains, ρsj(z), and the total
segment density of chains, ρs(z). The densities ρsj(z) and ρs(z)
are defined via commonly used relations; see refs 44−48 and
52.
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In the system under study, the local densities of segments are
only the functions of the distance from the surface z. The local
density of fluid molecules, however, depends also on the
orientation of molecules with respect to the surface. Following
refs 18, 26, and 32, we introduce the orientation distribution
function α(r,ûf) ≡ α(r,ω) in the following way

ω ωρ ρ α= ̃r r r( , ) ( ) ( , ) (16)

In the above, ω = (ϕ,θ); θ is the angle measured with respect
to the positive direction of the OZ axis; and ϕ is the angle in
the OXY plane. The function α(r,ω) is normalized, i.e.
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π π
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0

2
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The system is studied in a grand canonical ensemble with the
constraint of constancy of the number of chain molecules, i.e.

∫ρ ρ= z zd ( )sjc (18)

where ρc is the number of chain molecules per area of the
surface; i.e., it is the surface density of the chains. Of course, the
integral in eq 18 does not depend on the segment index j.
The thermodynamic potential appropriate to the description

of the system is
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where F[ρs(r),ρ(r)] is the Helmholtz free energy functional,
and μ is the chemical potential of the fluid.
At the first stage, the free energy functional is expressed as

the sum of ideal, Fid, and excess, Fex terms, F = Fid + Fex. The
ideal term is known exactly (cf. refs 18, 32, 44−48, and 52)

∫
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Then, the excess free energy is divided into the contributions
due to hard sphere interactions, Fhs, the contribution due to
connectivity of chains, Fc, and the contribution from the
anisotropic interparticle interactions. The contribution Fhs is
evaluated according to the fundamental measure theory,52 while
the chain connectivity contribution, Fc, results from the first-
order perturbation theory of Wertheim.53 These contributions
are given by eqs 7, 10, and 12 in ref 54, and for the sake of
brevity we have included them in the Supporting Information.
Note that none of the free energy contributions, Fhs, nor Fc
depends on α(r1,ω).
Finally, the anisotropic interactions between fluid molecules

and fluid molecules and segments of the chain are described
using the mean field approximation. The interactions between a
fluid molecule and different segments, j = 1,2, ..., M, of a chain
may be, in general, different. The mean-field free energy term,
Fatt,MF consists of two contributions, Fatt,MF = Fatt,MF

f f + Fatt,MF
f j ,

where the first term is due to the fluid−fluidand the second
term is due to the fluid−segments interaction. For fluid−fluid
contributions, we have (cf. refs 18 and 32)

∫
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whereas the fluid−segment contribution is given by
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When the interactions of fluid molecules with all the segments
are the same, then all the terms of the sum 22 become identical;
therefore, the summation operator can be removed, and the
segment local densities ρsj(r) should be replaced by the total
segment density, ρs(r).
The equilibrium density profiles are found by minimization

of the thermodynamic potential Ω. Thus55
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After substituting eqs 20, 21, and 22 into eq 19 from eq 25 we
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To derive the equations for ρsj(z) and ρ̃(z), we make use of
eqs 20, 21, 22, 26, and 27 and rewrite eq 19 as follows
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Then, from eqs 24 and 28 we obtain
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The expressions for the functional derivative δ[Fhs + Fc]/
δρ̃(z) can be found in refs 44−48, 52, and 54, while the
functional derivative δFa/δρ̃(z) is calculated as
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The evaluation of the density profiles of segments, ρsj(r), is
more complicated. To do that we follow the equations of refs
44−48, 52, and 54. The result is
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where the constant ͠ results from the normalization
condition, eq 18, and
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The functions Gj
(L)(z) and Gj

(R)(z) are determined from the
recurrence relation
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for i = 2, 3, ..., M and with G1
(L)(z) = G1

(R)(z) ≡ 1. In the above
Θ(s − x) is the step function.
Equations 26, 30, and 32 summarize our development. The

solution of these equations with respect to the density profiles
ρ̃(z) and ρsj(z) and the orientation profile α(z, θ) was based on
the Piccard iteration scheme, and all the convolutions were
determined employing the Fast Fourier Transform subroutines
from the FFTW library.56,57 This method is quite standard
now, and all numerical details can be found in the paper of
Roth.58 However, in the case of the system under study, one
should pay special attention to the integrands in eq 31. It has
been already noted by Rosenthal18 that for very low local
densities it is necessary to calculate the limiting values

| |
| |

=
| |→

a r
a r
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1
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and then to incorporate these into eq 31 with additional
clauses.
To characterize the structure of the adlayer, it is also useful to

introduce the orientation order parameter

∫π θ θα θ θ=
π

h z z( ) 2 d sin ( , )cos
0 (38)

The function h(z) describes the “polarization” of the particles.
It can take values between −1 and 1 corresponding to the
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complete alignment of the Janus spheres in negative (positive)
z-direction at a given value of z.

■ RESULTS AND DISCUSSION
The system in question is characterized by numerous
parameters. To reduce their number, we assume that all
spherical species (i.e., fluid particles and segments) have the
same size, σc = σ. We also assume that all the segments are
characterized by the same values of the parameters Cfj and λf j
and that λf j = λ = 3σ. The reduced temperature is defined as T*
= kT/C. Moreover, σ is taken as the unit of length; so the
reduced distance is z* = z/σ, and the reduced densities are
ρ*(z) = ρ(z)σ3 and ρsj*(z) = ρsj(z)σ

3.
The parameters that characterize the brush are the number of

segments, M, and the surface brush density, Rc = ρcσ
2. The

calculations are carried out for rather short chains,M = 2 andM
= 6 .
The calculations carried out by Tarazona et al.26 indicated

that for a bulk system the present model predicts the formation
of not only planar structures (“membrane-like”) but also
spherical structures (“vesicles”). In the case of the systems
under study, i.e., in the presence of adsorbing walls, a full, three-
dimensional calculation would be difficult. Therefore, we have
limited ourselves to study the cases of density distributions with
the symmetry resulting from the presence of the walls and
assume translational symmetry in the other spatial dimensions.
Consequently, the orientation distribution also simplifies to
α(r,ω) = α(z, θ).
The bulk (reference) fluid is the one-component fluid

involving Janus particles. When a mean-field theory is used to
describe a disordered bulk fluid, the quantity |a| is zero. Thus,
for a disordered bulk system, the mean-field pressure and
chemical potential are just the same as for the system of hard
spheres. We can characterize the bulk disordered fluid either by
the value of the chemical potential, μ, or by its density, ρb, ρb* =
ρbσ

3.
When only a planar symmetry is considered, the bulk system

exhibits a continuous transition from a disordered to
membrane-like structure. Performing calculations analogous
to those of refs 26 and 32, we have found the phase diagram
very close to that reported by Tarazona et al.26 Small
differences can be attributed to different treatments of the
hard-sphere contributions to the free-energy functional in both
approaches. All our model calculations have been carried out at
a fixed temperature, T* = 0.2. At that temperature the
transition from a disordered to membrane-like structure in the
bulk fluid occurs at ρb* ≈ 0.248.
We begin with the presentation of examples of adsorption

isotherms Γ* = Γσ2

∫ ρ ρΓ = ̃ −z zd [ ( ) ]b (39)

In Figure 2 we show a set of isotherms of Janus particles at T*
= 0.2 on nonmodified (the curves marked Rc = 0) and on
modified (Rc = 0.05 and Rc = 0.4) surfaces. The surface is just a
hard wall; i.e., the Yukawa potential energy parameter, Cfs, is
zero. The brushes are built of M = 2 and M = 6 segments that
are inert with respect to the Janus particles, Cfj = 0. Two surface
densities of brushes, namely, Rc = 0.05 and Rc = 0.4, are
considered. Due to structural transition in a bulk fluid, our
calculations were carried out only for ρb* < 0.248. For a
comparison we have also displayed here adsorption isotherms
of hard spheres, C = 0.

In general, the excess adsorption isotherms are negative.
Exceptions, but only at higher bulk fluid densities, are the
isotherms of Janus particles on the nonmodified surface and on
the surface modified with the chains of M = 2 at low surface
grafting density, Rc = 0.05. Because of lack of attractive forces
between the segments of chains and fluid molecules, the brush
acts as a set of obstacles, and therefore covering the surface with
a brush leads to lowering the adsorption. A more pronounced
effect occurs for longer chains and for larger grafting densities,
Rc.
Positive adsorption of Janus particles on a nonmodified

surface at higher bulk densities results from a specific
orientation of molecules within the adlayer adjacent to the
surface; cf. Figures 3a and 3b where we have displayed the
examples of the density profiles (Figure 3a) and examples of
the orientation order parameter, h(z) (Figure 3b). Note that
the contact (i.e., at z* = 0.5) values of the density profiles for
Janus particles and for hard spheres are the same. This results
from the theorem that the contact value of the density profile is
related to the bulk pressure.59 Within the considered model the
bulk pressures of hard spheres and of disordered bulk Janus
fluid are identical.
The orientation of a pair of particles is the most energetically

favorable, when (û1 − u2̂)·r2̂1 = −2 (cf. Figure 1b). A
“membrane”-like structure at the wall is built when the particles
in vicinity of the wall expose their “hydrophilic” parts to the
solid surface, i.e., when θ = π. Within the first two layers, the
Janus particles start to form a more packed structure in which
the particles agglomerate (Figures 3a and 3b). Several first layer
particles face their “hydrophilic” parts to the wall. The particles
located at larger distances from the wall, however, assume an
inverse orientation. From the values of the function h(z)
plotted in Figure 3b for a nonmodified surface (thick solid line)
at the first minimum and at the first maximum, it appears that
the average orientation of the particles adjacent to the wall is
close to 2π/3, while the angle for the second layer particles is
close to 4π/9. For a better visualization, we have schematically
drawn representative first and second layer particles, whose
orientations correspond to the average values given above.
Consequently, there is an effective attraction between particles

Figure 2. Adsorption isotherms of Janus particles at T* = 0.2 on
nonmodified and modified surfaces. The values of Rc are given in the
figure; the curves labeled Rc = 0 are for a nonmodified surface. Dashed
lines are for M = 2 and dotted lines with circles forM = 6. Dash-dotted
lines denote adsorption isotherms of hard spheres. In the case of hard
spheres the length of attached chains was M = 6.
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located within the surface layer that causes the adsorption
increase, in comparison to the adsorption of hard spheres.
The presence of tethered chains that act like obstacles causes

the fluid molecules to be expelled from the surface region. This
effect is the most pronounced forM = 6 and Rc = 0.4, where the
local density of fluid densities within the tethered layer drops

almost to zero (Figure 3a). Instantaneously, when the grafting
density Rc increases, an “outer” part of the tethered layer acts as
a “new” adsorbing surface, and an accumulation of the fluid
particles within that region is observed. An increase of Rc causes
the orientation ordering of the fluid particles located within the
tethered layer to diminish first, but then it starts to increase

Figure 3. (a) Density profiles of Janus particles (lines) and of hard spheres (symbols). Solid line and squares are for nonmodified surface; dashed
line and circles are for M = 6 and Rc = 0.05; dash-dotted line is for M = 6 and Rc = 0.1; and dash-double dotted line and diamonds are for M = 6 and
Rc = 0.4. (b) The function h(z) for for systems from (a). The nomenclature of the lines is the same as in part a. We have also schematically drawn
here the fluid molecules, whose orientations correspond to the average orientations within the first (at z* = 0.5) and the second (at z ≈ 1.6) adlayers.
(c) The total segment density profiles for systems involving Janus particles from (a). The nomenclature of the lines is the same as in part a. In all
parts the bulk fluid density is ρb* = 0.15, and the temperature is T* = 0.2.

Figure 4. Adsorption isotherms on a surface modified with tethered chains built of M = 2 (part a) and M = 6 (part b) segments. Lines without
symbols are for Rc = 0.05, decorated with triangles are for Rc = 0.1, with diamonds for Rc = 0.3, with squares for Rc = 0.4, and with circles for Rc = 0.6.
Solid lines are for Cfj = C, while dashed lines are for Cfj = −C. The temperature is T = 0.2.
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(Figure 3b). However, the number of such particles is much
smaller than for the nonmodified surface because the presence
of the segments of the brush within that region reduces the
space available to fluid particles (Figures 3a and 3c). Indeed, for
higher values of Rc a well-ordered structure of the brush
develops (Figure 3c), and for Rc = 0.4 the amount of fluid
molecules within the region of z* < 4 is very low (see Figure
3a).
Lower adsorption on modified surfaces is due to a depletion

of the fluid density profiles within the region occupied by brush
molecules (Figure 3a). Because of the lack of attractive forces
between the segments of chains and fluid molecules, the brush
acts as a set of obstacles, and therefore the lowest adsorption is
observed for longer chains and for larger surface grafting
densities, Rc. The adsorption of Janus particles is higher than
the adsorption of hard-spheres, however. This is due to the
effective attraction between adsorbed adlayers.
We now consider the case when the segments of grafted

chains interact with fluid species, Cfj ≠ 0. Two cases are
considered, namely, Cfj = C and Cfj = −C. In both cases, the
magnitude of the Yukawa energy parameter for segment−fluid
interactions is the same. In the first case, Cfj = C, the segments
attract “hydrophobic” parts of Janus particles; i.e. they “act”
against the formation of aggregates within the fluid. In the
second case, however, they may “stimulate” formation of

aggregates. The interaction of fluid molecules with the “bare”
surface is still of a hard-wall type.
In Figure 4, we present the adsorption isotherms for the

systems with M = 2 (part a) and with M = 6 (part b). In both
cases the calculations were carried out for the systems with Cfj

= C and Cfj = −C and for different grafting densities. When the
grafted chains are very short (M = 2), the system behaves like a
heterogeneous surface with randomly distributed sites. The
interaction of fluid molecules with those sites can either
enhance (Cfj = −C) or inhibit the formation of aggregates (or a
membrane-like structure, when the density is sufficiently high).
There is an interplay between the volume exclusion effects and
orientation-dependent segment−fluid molecule forces. For
short chains, the latter effect prevails, and we observe a
significant increase of adsorption (for Cfj = −C) and a
pronounced decrease of adsorption (for Cfj = C) in comparison
to the systems, in which the segments of tethered molecules act
as obstacles (cf. Figure 4a).
If Cfj = −C, the interactions between segments of short

chains and fluid particles “help” form the aggregates between
fluid molecules. Consequently, the adsorption increases. An
opposite effect is observed for Cfj = C. Now, the segment−fluid
interactions compete with fluid−fluid interactions, destroying a
possibility to form aggregates between fluid molecules.

Figure 5. (a and b) Fluid density profiles. The chains are built of M = 2 segments. The bulk density is ρb* = 0.1. The temperature is T* = 0.2. In part
(a) grafting densities are: 0.05 (solid line); 0.1 (dashed line); 0.3 (dash-dotted line); and 0.4 (dash-double dotted line). The segment−fluid
interaction parameter is Cfj = C. In part b, the grafting densities are: Rc = 0.05 - solid line; Rc = 0.3 - dashed line; and Rc = 0.6 - dash-dotted line. The
inset shows the local densities of the second segment, ρS2(z), normalized by the grafting density. Part c shows the functions h(z) for the systems
from part b (the nomenclature of the lines is the same as in part b). Dotted vertical lines indicate the positions of the consecutive maxima, labeled by
1, 2, and 3 in part b.
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Consequently, the adsorption decreases, and this decrease is
more pronounced for larger grafting densities.
In Figures 5a and 5b, we show the structure of fluid particles

for the two kinds of systems discussed above. Part a is for the
case when the segment−fluid interactions “disturb a correct”
orientation of fluid particles, while for the systems from Figure
5b, the segment−fluid interaction enhances the formation of a
“membrane-like” structure within the adsorbed layer. When the
grafting density, Rc, is high enough, the outer surface of the
chains is sufficiently dense to create “a new wall” that exerts a
force ordering the molecules. For Cfj = −C the ordering
enforced by segment−fluid interactions leads to an increase of
attraction between fluid molecules in the vicinity of the surface
and to an increase of adsorption. The phenomenon described
above is seen in Figures 5b and 5c for Rc = 0.6. The fluid
molecules form three-well pronounced layers (the consecutive
layers are distinguished by the labels 1, 2, and 3). The height of
the first local density peak is the smallest, but the maximum of
this peak is at the z* = 1.5, where the local density of the j = 2
segment also possesses its maximum (see the inset to Figure
5b). Figure 5c illustrates how the function h(z) changes with a
distance from the wall. The vertical dotted lines correspond to
the positions of the local density peaks at Rc = 0.6 in Figure 5b
(labeled 1, 2, and 3, respectively).
In the case of longer grafted chains (Figures 4b and 5b), the

volume exclusion effect prevails, and the excess adsorption is
negative for all the systems under study. For the system with Cfj
= −C the fluid particles accumulate at the outer part of the
brush. This is particularly visible for larger grafting densities,

while for lower values of Rc the fluid molecules can penetrate
the brush (see Figure 6a). However, the accumulation of fluid
molecules within the outer part of the brush does not balance
the expelling of the fluid molecules from the region close to the
wall, and the resultant isotherm is negative. Of course, the
structure of the brush not only changes with the grafting
density, Rc, but also depends on the segment−fluid interactions
(Figure 6b). In particular, accumulation of the fluid molecules
at the outer part of the brush “pushes” the segments toward the
wall. Consequently, the brush characterized by the value of the
Yukawa parameter Cfj = −C becomes slightly more compact in
comparison with the brush, characterized by Cfj = C. In Figure
6c we display the functions h(z) for the systems from Figure 6a.
It is interesting that h(z) for the system with Cfj = C and for Rc
= 0.4 exhibits the structure reflecting the positions of
consecutive maxima and minima of the total segment density
from Figure 6b. One should remember, however, that the
density of fluid within that region is very small (cf. Figure 6a).
Finally, we have carried out calculations for the nonzero

anisotropic part of the fluid−solid potential, vA(z), (cf. eq 7).
Of course, depending on the orientation of fluid molecules
enforced by the anisotropic fluid−solid potential, it can expect
either enhancement or inhibition of the formation of ordered
adlayers in the vicinity of the surface. Moreover, the fluid−solid
anisotropic potential can act “in accordance” with or “against”
the fluid−segment orientation forces. In addition, a change of
the grafting density Rc, as well as the change of the length of
tethered chains, can alter the volume exclusion effects, which
can become more or less important. The structure of the

Figure 6. Fluid density profiles (part a), total segment density profiles (part b), and the functions h(z) for the system with grafted hexamers at the
two grafting densities, Rc = 0.05 (solid lines) and Rc = 0.4 (dashed lines). Lines without symbols are for Cfj = C, whereas lines with symbols are for
Cfj = −C. The bulk density is ρb* = 0.15, and the temperature is T* = 0.2.
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adsorbed fluid depends on an interplay between all those
factors, and even a small change of some modeled parameters
may result in a quite unexpected behavior. Unfortunately, a
systematic study of the role of all the parameters of the model
would require massive (and time-consuming) calculations.
Therefore, the aim of our investigation was to illustrate some
new possibilities that can emerge rather than to obtain a
complete description of the model.
The transition from the disordered to membrane-like phase

in the bulk fluid observed in refs 26 and 32 was continuous.
However, one can expect that the presence of strong fluid−wall
interactions can enforce a first-order transition. This point is
illustrated in Figure 7a. We show here examples of adsorption

isotherms for several selected systems. In all cases Cfs = −C.
This potential “helps” the fluid molecules to assume the
orientation that leads to the formation of a membrane at the
wall. Moreover, we assumed that the range of the fluid−solid
potential, vA(z), is two times longer than the range of all
remaining anisotropic interactions, λfs = 6σ. For the non-
modified surface, we observe a jump on the adsorption
isotherm. This jump occurs at ρb* ≈ 0.139 and is connected
with an abrupt formation of a bilayer (cf. Figures 7b and 7c).
The occurring transition remains a layering transition in the
systems involving Lennard-Jones fluids in contact with
modified surfaces.60

The presence of even a small amount of pinned short (M =
2) destroys the transition, especially when Cfj = +C (cf. Figure
7a, the curve abbreviated 0.01; + 1). However, for M = 2, Rc =
0.6, and for Cfj = −C, the first-order transition still exists but is
shifted toward high bulk density that is very close to the bulk
transition density (ρb ≈ 0.248). In the latter case, the transition
takes place at the “outer” plane of the brush. In the case of
longer attached chains, M = 6, the excess adsorption is negative,
and no traces of the occurrence of a transition have been found.
In general, the effect of the chains on the layering transition is
similar to that observed for Lennard-Jones fluids in contact with
modified surfaces.60,61

In the case of adsorption of amphiphilic molecules on
nonmodified and on modified surfaces, several interesting and
novel phenomena can occur. We have studied here only the
case of a planar symmetry. However, the development of a
theoretical method that would include a possibility of formation
of spherical self-assembled structures at the walls seems to be
crucial for a complete description of such systems. Another
open point is the vapor−liquid transition in the system. The
present mean-field approach leads to cancellation of the
anisotropic contribution to the functional in a homogeneous,
isotropic state, and thus it does not lead to the gas−liquid
transition in the bulk fluid. On the other hand, some
preliminary results32 obtained for the bulk system from the
so-called modified mean-field bulk theory, according to which
the pair correlation function is approximated by the Boltzmann
factor, indicate that there exists such a transition. Thus, it seems
to be also important to propose for nonuniform systems a
modification of the theory that would more accurately describe
the attractive force contribution to the free energy functional.
The case of extremely small tethered molecules, composed just
of one segment, seems also worth investigating. In such a way,
one can modify the properties of the original surface by
“attaching” to it randomly distributed centers that can change
its properties, e.g., for “hydrophilic” to “hydrophobic” (or vice
versa). All these problems are currently under study in our
laboratories.
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