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Abstract. The decay of temperature of a force-free granular gas in the
homogeneous cooling state depends on the specific model for particle
interaction. For the case of rough spheres, in recent experimental and theoretical
work, the coefficient of restitution was characterized as a fluctuating quantity.
We show that for such particles, the decay of temperature with time follows the
law T ∼ t−50/29 which deviates from Haff’s law, T ∼ t−2, obtained for gases of
particles interacting via a constant coefficient of restitution also from T ∼ t−5/3

obtained for gases of viscoelastic particles. Our results are obtained from kinetic
theory and are in very good agreement with Monte Carlo simulations.
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1. Introduction

Granular gases, that is, ensembles of dissipatively interacting macroscopic particles may be
considered as a model for granular matter in the dilute limit. The dynamics of granular gases is
characterized by ballistic trajectories of the particles, interrupted by instantaneous dissipative
collisions. In physical terms, the duration of collisions are considered negligible as compared
with the time of mean free flight. This paradigm may serve as a definition of the term ‘granular
gas’ in contrast to other granular systems where the particles may interact via permanent or long-
lasting contacts. Besides of its practical importance for the description of natural phenomena,
such as clouds of dust or the rings of the large planets of our solar system, granular gases have
been intensively studied for their rich phenomenology.

From the point of view of theoretical physics, of particular interest is force-free granular
gas, that is, an spacially infinite system in the absence of external gravity and boundaries
due to confinement. For such systems, statistical physics provides powerful tools like the
Liouville- and Boltzmann equation which may be adopted to account also for dissipative
particle interactions [3, 4]. Subsequently, the full hydrodynamics can be derived, including the
corresponding transport coefficients, e.g. by exploiting the Chapman–Enskog approach [4–6].

Because of the dissipative nature of particle interaction, granular gases are always in
non-equilibrium, giving rise to many interesting phenomena, such as non-Maxwellian velocity
distribution, e.g. [7], correlations of the velocities, e.g. [8], anomalous diffusion [9] and finally
the instability of the homogeneous state in the long-time evolution [10] which may be transient,
depending on the details of the particle interaction [11].

Starting from a homogeneous state at the time of initialization the evolution of a granular
gas follows certain stages: (a) in a fast first stage, the distribution function of the gas rapidly
converges to its native velocity distribution: on a time scale corresponding to a few collisions
per particle, the distribution looses memory of the initial distribution and becomes essentially
near Maxwellian, except in the high speed tail, where convergence is much slower [12]
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(mathematically it takes infinite time). (b) In the second stage of its evolution, the granular gas
stays homogeneous, while the absolute velocity of the particles decays in time which may be
expressed by a decay of temperature [13]. Therefore, this stage is called homogeneous cooling
state (HCS). The velocity distribution and in particular temperature (its second moment),
describe the HCS exhaustively, that is, the time dependence of the one-particle distribution
function is solely a function of temperature. The distribution differs from the Maxwellian in two
main points: the main part of the distribution, that is for v ∼ vT , where vT is the thermal velocity,
is distorted which may be described by a low-order Sonine expansion [14]. For large velocities,
v � vT , the distribution reveals an overpopulated high-energy tail, f (v) ∼ exp(−v) [7, 15]
in difference to f (v) ∼ exp(−v2) expected for molecular gases. The high-energy tail was
found first from kinetic arguments [15] and numerical simulations and later from a high-
order Sonine expansion [16]. The properties of granular gases in the HCS have been very
intensively studied, e.g. [7, 17, 18], revealing in particular the breaking of equipartition in
frictional [19, 20] or polydisperse [21–24] granular gases. The HCS has also been employed
in derivations of Green–Kubo relations for granular gases [25, 26]. (c) The third stage of the
evolution is characterized by the instability of the HCS and the formation of dense clusters, due
to localized fluctuations of the density, associated with the instability of the shear mode [10, 27],
for large enough systems [10, 27–29]. Those fluctuations, by locally modifying the collisions
frequency (and thus energy dissipation), break the pressure balance and generate a positive
feedback [10]. (d) Depending on the details of particle interaction, the cluster state may become
unstable [11] because for small impact velocity, defined as the component of the relative velocity
of two colliding particles along the direction joining their center, the collisions become less and
less dissipative expressed by the coefficient of restitution approaching unity. In this case, the
clusters resolve and the granular gas turns back to a homogeneous state at very low temperature.
Resolution of the clusters may be observed for gases of viscoelastic spheres [11] as well as for
charged particles and similar cases [30–32].

Whether the stages of the evolution of a granular gas occur on separate time scales depends
mainly on the extend of energy loss due to dissipative collisions, expressed by the coefficients
of restitution. In this paper we assume that the dissipation is small enough such that the HCS
(stage (b)) exists for a certain time interval. That is, we assume that there exists an interval in
time where the temperature is the only system characteristics which varies in time, before at
stage (c) correlations of density and velocity become important.

Apart from particle number density and initial temperature, the key parameter,
characterizing the kinetics of granular gases is the coefficient of restitution, ε, quantifying
the loss of energy of the relative particle velocity due to collisions. While in most references
it is assumed that ε is a material constant, detailed analysis of the collision process as well
as experiments show clearly that the coefficient depends on the impact velocity which was
mentioned in the literature already long ago, e.g. [33–36]. Moreover, even for virtually perfect
spheres like ball bearings, in experimental measurements one observes significant scatter
because of microscopic surface asperities [37–40]. This scatter may be expressed by considering
the coefficient of restitution as a fluctuating quantity. The aim of this paper is to address the
question how the stochastic nature of dissipative particle interactions influences the decay of
temperature of a force-free granular gas as a function of time.

Throughout this paper we assume that the particle size and material properties as well
as the thermal velocity and the number density of the gas are chosen such that the dynamics
can be described by a purely repulsive coefficient of restitution. In particular, we require that
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the characteristic impact velocity is large enough to neglect van der Waals cohesive forces and
small enough to avoid plastic deformation and brittle of the particles.

The structure of the paper is as follows. In section 2, some general results concerning the
decay of temperature in the HCS are discussed. Section 3 presents a numerical and analytical
analysis of the temperature behavior in the case of a stochastic, velocity-dependent coefficient
of restitution. Section 4 is devoted to the study of the velocity distribution function, employing
a slightly simplified (Laplacian) distribution for the coefficient of restitution. Finally, some
conclusions are presented in section 5.

2. Decay of temperature in the homogeneous cooling state

2.1. Constant coefficient of restitution and Haff’s law

The inelasticity of a collision between two particles may be characterized by the coefficient of
restitution, ε, relating the normal component of the particles’ relative pre-collisional velocity,
v′

i j ≡ v′

i − v′

j , whose norm defines the impact velocity, to that of the post-collisional relative
velocity, vi j ,

vi j = −εv ′

i j , 06 ε 6 1. (1)

where

v′

i j =
(
Ev ′

i − Ev ′

j

)
· Eei j , vi j =

(
Evi − Ev j

)
· Eei j , (2)

Ev ′

i , Ev ′

j are the pre-collisional velocities, Evi , Ev j are the post-collisional velocities, and

Eei j =
Eri − Er j∣∣Eri − Er j

∣∣ (3)

is the unit vector at the instant of contact. Using these definitions we obtain the post-collisional
velocities via

Evi = Ev ′

i −
(1 + ε)

2
v ′

i jEei j . (4)

Because of the dissipative nature of the collisions, characterized by ε < 1, the absolute
velocities of the particles decay on average, which may be expressed by a decay of temperature.
If we define temperature in analogy with the temperature of molecular gases,

T =
1
3mv2, (5)

where m denotes the mass of a particle, and an overline denotes an average over the particles,
the evolution of temperature is given by

dT

dt
∼ −nd2(1 − ε2)T 3/2, (6)

where n and d are the number density of the gas and the diameter of the particles, respectively.
If the coefficient of restitution is assumed independent of the impact velocity, ε = const, we
obtain Haff’s law [13],

T (t) =
T0

(1 + t/τ0)
2 with τ−1

0 ∝ nd2
(
1 − ε2

)√
T0 (7)

where T0 is the initial temperature, that is asymptotically T (t) ∼ t−2. Haff’s law is the
most simple expression for granular cooling. The asymptotic form has been confirmed
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experimentally, where gravity was compensated by diamagnetic levitation [41]. Note that Haff’s
law is valid after the relaxation of the initial (Maxwell-) distribution to the native distribution;
during this very short relaxation, the cooling is dominated by exponential terms [42]. Haff’s law
seems to be rather general; it was shown to hold true for smooth spheres in dimension 2–6 [43]
as well as for a gas of needles [44]. Even beyond the HCS, that is at later times when significant
correlations emerge, Haff’s law is a fair approximation [18].

Somewhat unclear is the influence of the shape of the particles on the cooling law. While
Haff cooling is observed for needles in 2d [44] and ellipsoids in 3d [45], in simulations of
‘elongated’ sharp edged particles T ∼ t−5/3 was found [46].

2.2. Temperature decay due to an impact-velocity dependent coefficient of restitution

While the assumption ε = const simplifies the kinetic theory significantly, for realistic particles,
the coefficient of restitution is a function of the impact velocity, ε = ε(v). For non-adhesive
viscoelastic spheres, ε(v) can be obtained by integrating Newton’s equation of motion
describing the dynamics of the collision when the (normal component of the) interaction force
is given by a generalized Hertz law [47]:

F = min

(
0, −

Y
√

d

3
(
1 − ν2

p

)ξ 3/2
−

3

2
A

Y
√

d

3
(
1 − ν2

p

)√ξv12

)
,

where ξ ≡ 2 − |Er1 − Er2| is the compression of the colliding spheres ( Er1 and Er2 denoting their
positions), Y is the Young modulus, νp is the Poisson ratio and the dissipative constant A is a
function of the elastic and viscous parameters. The coefficient of restitution is then given by
ε = −

v12(tc)
v12(0)

, where tc is the duration of the collision, determined by requiring d2ξ(tc)
dt2 = 0. This

complicated problem was solved rigourously [48] with the solution

ε(v) = 1 +
∞∑

i=0

hi

√3A

2

(
2Y

√
d

3m(1 − ν2
p)

)1/5

v
1/10

i

, (8)

hi being analytically known, universal constants. For realistic materials, equation (8) agrees
well with experiments, e.g. [49], while a constant coefficient of restitution disagrees even with
a dimension analysis [50]. From equation (8) follows that ε depends on the temperature in
equation (6). In this case, the temperature decays due to

dT

dt
∝ −nd2T 8/5 , (9)

with the solution

T (t) =
T0(

1 + t/τ ′

0

)5/3
, (10)

that is, asymptotically T (t) ∼ t−5/3.
In many cases, temperature decays algebraically with time, but this is not always the case:

for ε due to

ε(v) =

{
ε∗ for v > v∗,

1 for v 6 v∗,
(11)
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temperature decays logarithmically slow [31]:

T (t) ∼ 1/ log(κt), (12)

where κ = const. The same behavior was found for particles with long range (electrostatic)
repulsive interaction [30–32] while for attractive long range interaction enhanced cooling
(compared with Haff’s law) was reported [32].

Note that for the derivation of equations (7), (10) and (12) it was assumed that the state
of the system is described by the second moment of the velocity distribution. In general,
however, due to the non-Maxwellian distribution, the kinetic state depends also on higher (even)
moments [51, 52], that is,

dT

dt
= F

(
T, v4, v6, . . .

)
. (13)

For the cases discussed above, it was shown [53, 54] that the deviations of the distribution
function from the Maxwellian, expressed by the Sonine coefficients, changes the decay rate, τ

and τ ′, but not the functional form of the function T (t). The other type of deviation from the
Maxwellian, that is, the overpopulated high-energy tail [15] leaves also its fingerprints in the
temperature decay law, but its effect is very small [12].

2.3. Decay of temperature beyond the homogeneous cooling state

When the system left the HCS due to the formation of correlations in the velocity field and
cluster formation, Haff’s law is invalidated. Most references on the cluster state describe slower
cooling compared to Haff’s law, e.g. [18]. Also Dominguez and Zenit [55] describe cooling
according to T (t) ∼ t−k with 1. k . 2.2, depending on the volume fraction. Asymptotically,
for large time the temperature decays as T ∼ t−1 [56].

3. Decay of temperature for fluctuating coefficient of restitution

3.1. Stochastic coefficient of restitution

Realistic granular particles are certainly not perfect spheres. Even nearly spherical particles
like glass spheres or precision steel spheres as used in ball-bearings, reveal surface asperities.
These asperities lead to a surface roughness and in turn to a stochastic behavior of the
particles in collisions which may be expressed by a stochastic coefficient of restitution. Even
for microscopically small asperities, it was shown that the fluctuations of the coefficient of
restitution are significant [40]. Based on experiments consisting of 2 × 106 single impacts,
performed by means of a robot [40] it was found that the functional form of the stochastic
coefficient of restitution is strongly non-Gaussian. Instead, its probability distribution is
Laplace-like, that is, composed of two exponential functions. Notably, the fluctuations observed
in experiments exhibited a remarkable asymmetry:

ρv(ε) =


1

σp(v) + σm(v)
e−

ε−εmax(v)
σp (v) if ε > εmax(v),

1

σp(v) + σm(v)
e

ε−εmax(v)
σm (v) else ,

(14)
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Figure 1. Histograms of the coefficient of normal restitution for impact velocities
from small intervals. Each histogram represents a certain impact velocity. The
lines are exponential fits.

where εmax(v) is the value of ε where ρv(ε) adopts its maximal value. It was found that the
function εmax(v) is the same as for viscoelastic spheres, equation (8).

The probability distribution, equation (14), was experimentally found and confirmed by
simulations where the surface roughness was modeled by a large number (∼106) of microscopic
spheres covering the surface of the sphere [40]. Figure 1 is obtained from experimental data [40]
where the coefficient of restitution of a particle in contact with a flat plate is investigated as a
function of the impact velocity. It shows the normalized frequency ρ(ε) of measurements of a
certain value of ε for several small intervals of the impact velocity v.

The mathematical form of equation (14) is a Laplace-probability density

ρL(ε) =
1

2σ
e

−|ε−〈ε〉|
σ (15)

with two generalizations:

(a) The mean value 〈ε〉 is replaced by a decaying function of the impact velocity, εmax(v), to
account for the physical fact that the coefficient of restitution increases with decreasing
impact velocity. This behavior is well known for dry viscoelastic particles and for impact
velocity small enough to avoid plastic deformations and large enough to neglect surface
effects like adhesion, e.g. [57, 58].

(b) The Laplace distribution, equation (15), is symmetric with respect to 〈ε〉, while the
distribution density, equation (14) is asymmetric, characterized by two (impact velocity
dependent) standard deviations σp(v) and σm(v), for ε > εmax and ε < εmax, respectively.
The asymmetry can be explained considering the mechanism of energy transfer between
the (external) linear degree of freedom and internal degrees of freedom during the
collision [40]. Due to this asymmetry, strictly speaking, the maximum of the distribution
function, εmax(v) is different from the expectation value 〈ε〉, however, both values are very
close.

In the subsequent analytical and numerical calculations we will assume that the coefficient of
restitution obeys the probability density function equation (14).
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Fluctuating coefficients of restitution were also introduced in other contexts such as to
model heating through collisions in a vertically vibrating granular system [59, 60], to describe a
gas of one-dimensional particles accounting for internal degrees of freedom [61, 62] and in gases
on Maxwellian molecules [63] to investigate the high velocity tail of the distribution function.
More general random collision rules were considered in [64]. All these models are rather
different from our collision model, equation (14), in that the functional form of the coefficient
of restitution was not based on considerations of the physical processes during collisions.

3.2. Decay of temperature—kinetic theory

At the kinetic level, the system is described by a distribution function for the velocities, f (Ev),
by mean of which one can express the number density field, and temperature, as

n =

∫
f (Ev ) dEv, (16)

T =
1

n

∫
f (Ev )

mv2

3
dEv. (17)

The equation of motion for T is given by

n
∂T

∂t
= −γ, (18)

where γ is the cooling coefficient, describing the rate of decay of the kinetic energy (multiplied
by 2/3), due to the inelasticity of the collisions. Using the velocity transformations, equation (4),
the change of energy 1E in a collision between particles with velocities Ev1 and Ev2, along the
direction spanned by the unit vector Ee, and characterized by a coefficient of restitution ε, is
given by

1E = −

(
1 − ε2

)
2

m (Ev12 · Ee )
2

. (19)

In addition, the collision frequency ν12 of such collisions is

ν12 = d2 f (Ev1) f (Ev2) |Ev12 · Ee | dEv1dEv2dEe, (20)

where d is the diameter of the particles. Therefore, the cooling coefficient is given in terms of
the distribution function by

γ =
m

12
d2

∫ ∫ ∫ ∫
ρ|Ev12·Ee | (ε) f (Ev1) f (Ev2)

(
1 − ε2

)
(Ev12 · Ee )

3 H (Ev12 · Ee ) dEv1dEv2dEe dε, (21)

where a factor 1/2 has been included to avoids double counting of collisions, ρv (ε) denote
the conditional probability for a coefficient of restitution ε, given a normal relative velocity
v, H is the Heaviside step function and the integration range of ε is [−∞, +∞]. Note that
the distribution function depends on the distribution ρv (ε). In order to take into account this
dependence, one needs to solve the Boltzmann equation pertaining to the system. For the
moment, we will for sake of simplicity neglect this dependence and assume that the deviation
of the velocity distribution function from the Maxwell distribution

f (0)
= n

( m

2πT

)3/2

e−
mv2
2T (22)
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Figure 2. Numerical data (obtained as described in section 3.3) (crosses) and
best fit (solid line) for (1 − 〈ε〉), plotted as a function of the impact velocity,
in logarithmic scale. The data are well described by a function of the form:
1 − 〈ε〉 = δ∗vη, with δ∗

= 0.05317, and η =
4

25 .

is small. This assumption is reasonable since the range of interest for the coefficient of restitution
is of the region ε ' 0.97 due to the experimental results on which this paper is based [40], see
figure 1. Recall that the value of the second Sonine coefficient (corresponding to the inelastic
correction to the Maxwellian distribution, cf section 4) for a granular gas with ε = const is
a2 < 0.01 in this region [14, 54]. In section 4 we will consider a slightly simplified distribution
ρ (ε) and show that the deviations from the Maxwellian are small indeed.

If we approximate the distribution function by a Maxwellian, f (Ev) ≈ f (0) (Ev), the cooling
coefficient γ reads

γ =
m

12
d2

∫ ∫ ∫ (
1 −

〈
ε2
〉)

f (0) (Ev1) f (0) (Ev2) (Ev12 · Ee )
3 H (Ev12 · Ee ) dEv1dEv2dEe, (23)

where brackets denote an average over ε. It appears that the evolution of the temperature deviates
from the decay corresponding to the case of non-fluctuating coefficient of restitution due both
to the variance of the distribution, and to the asymmetry of the distribution function, ρv(ε) (i.e.
〈ε2

〉 6= ε2
max). While the former has negligible effect, the latter has a qualitative influence on the

asymptotic evolution of the temperature. By using the coefficients σm(v) and σp(v) obtained
from simulation data (cf section 3.3 below), the average coefficient of restitution corresponding
to the distribution (14):

〈ε〉 (v) = εmax(v) −
[
σm(v) − σp(v)

]
(24)

is found to be well described by a function of the form

〈ε〉 = 1 − δ∗vη with δ∗
= 0.053 17 ; η =

4

25
(25)

(see figure (2)). A straightforward calculation then yields

γ =
288

625
2

33
50
√

π0

(
2

25

)
n2d2 1

m
29
50

T
79
50 δ∗, (26)
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i.e. solving equation (18):

T (t) =
T0[

1 + 4176
15625

(
2

33
50

)
0
(

2
25

)√
πnd2δ∗

(
T0
m

) 29
50 t
] 50

29

, (27)

that is,

T =
T0

(1 + t
τρ )

50/29

t→∞

−→ ∼ t−50/29 (28)

with the constant τ ρ defined by equation (27). Comparing this result with the decay of
temperature of a gas of viscoelastic particles [48, 65], T ∼ t−5/3, equation (10), we obtain that
the fluctuating coefficient of restitution lets the gas cool noticeable faster but slower than gases
of particles interacting via ε = const, where T ∼ t−1/2, according to Haff’s law [13].

3.3. Decay of temperature—numerical simulation

3.3.1. Numerical description of the stochastic coefficient of restitution. For the direct
simulation Monte Carlo (DSMC) simulation we need random numbers distributed according
to ρv (ε) as given by equation (14) where εmax(v) in turn is given by equation (8). Using the
inverse transformation method [66], these random numbers have to be computed from standard
random numbers, x , equally distributed in the interval x ∈ (0, 1), available on the computer. The
cumulative distribution function

% (ε) =

∫ ε

−∞

ρ(ε)dε (29)

maps each value of ε to a number in the interval (0, 1). So if % can be inverted, %−1(x), obeys
the distribution ρ if x is an equally distributed random number, x ∈ (0, 1).

For later use, we write the distribution function more general,

ρv(ε) =

{
eaε+b, ε < εmax(v),

ecε+d, else,
(30)

where the coefficients a, b, c and d follow from equation (14). Its cumulative distribution
function reads

%v(ε) =

∫ ε

−∞

ρv(ε)dε =


1

a
eaε+b ε < εmax(v)

1

a
eaεmax+b

−
1

c
ecεmax+d +

1

c
ecε+d else

 (31)

with the inverse

%−1
v (x) =


−b

a
+

1

a
ln(ax), %−1(x) < εmax(v),

−d

c
+

1

c
ln
(

cx −
c

a
eaεmax+b + ecεmax+d

)
, else.

(32)

In this way, we obtain random numbers distributed according to ρ(ε) from equidistributed
random numbers x ∈ (0, 1).

Note that the functions %−1
v depend on the impact velocity through εmax(v). To obtain a

random number according to ρv(ε), thus, we first determine εmax(v) and then by means of a
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Figure 3. Coefficients of restitution obeying the distribution equation (14),
generated using the described algorithm. Each histogram, corresponding to a
certain impact velocity, was obtained from 106 values of the coefficient of
restitution (β = 0.0467).

random number x ∈ (0, 1), via equation (32) we obtain the desired random number. In principle,
εmax(v) could be computed via equation (8) by truncating the series at a certain order. However,
this series in v

1/10 converges very slowly [48]. Therefore, we prefer the Padé approximation of
order [1/4] provided in [67]

εmax(v) ≈
1 + c1v∗

1 + b1v∗ + b2v2
∗

+ b3v3
∗

+ b4v4
∗

, v∗ = β1/2v1/10 (33)

with the universal (material independent) constants c1 = 0.501 086, b1 = 0.501 086, b2 =

1.153 45, b3 = 0.577 977, b4 = 0.532 178.
For demonstration, figure 3 shows a histogram of 106 random numbers obtained

by application of the described algorithm. The material constant β = 0.0467 was used,
corresponding to the experimental values given by Montaine et al [40] for the collision of
stainless steel spheres.

3.3.2. Direct simulation Monte-Carlo details. To study the decay of temperature in the HCS,
we apply DSMC [68, 69]. DSMC simulations of dilute granular gases have been first performed
by Brey et al [17]. DSMC is by orders of magnitude faster than molecular dynamics (MD)
(event-driven as well as force controlled MD), however, its main advantage compared to MD
is that DSMC is not a particle simulation [70] but a tool to integrate the Boltzmann (or
Boltzmann–Enskog) equation by means of a Monte-Carlo procedure. This allows us to compare
the results of a DSMC simulation directly with the results obtained from the kinetic theory.
When investigating a granular gas in the HCS, MD is restricted to almost elastic particles,
ε . 1, and low density, to avoid formation of correlations of different kind, conflicting the
homogeneous state. In contrast, DSMC works for all values of the coefficient of restitution
and density by avoiding correlations. We wish to remark here that large part of the literature
confirms that influence of the correlation of particle velocities due to inelastic collisions on the
cooling rate is small, e.g. [71–75], which has, however, also been questioned [76].
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Figure 4. Evolution of the granular temperature of a gas of 105 particles
interacting via a fluctuating coefficient of restitution. The full line shows the
analytical result, equation (28), the symbols show the simulation results. The
dashed lines mark the asymptotic behavior for gases of viscoelastic particles,
T ∼ t−5/3 [65], and particles interacting via a constant coefficient of restitution,
Haff’s law, T ∼ t−2 [13].

In our simulation, at each time step a pair of (quasi-) particles is selected randomly with
equal probability. A collision according to the collision rule, equation (4), was executed if

|Ee · Ev12| > RND 7vT , (34)

where RND is a uniformly distributed random number from the interval RND ∈ (0, 1) and
vT is the thermal velocity. To compute the post-collisional velocities using equation (4) we
determined a random unit-vector Ee. The term 7vT is an estimate for the smallest upper bound of
the average normal velocity, see [69] for justification of this term. The simulation was performed
with 105 quasi-particles, initialized with a Maxwellian velocity distribution according to the
thermal velocity T0 = 1.

3.3.3. Decay of temperatures obtained from DSMC simulations. We simulated a granular gas
of particles interacting via a fluctuating coefficient of restitution due to equation (14) in the
HCS and computed the granular temperature as a function of time via equation (5). For large
times, the temperature decays according to a power law, T ∼ t−k , with the best fit k = 1.71
being in excellent agreement with the result obtained from kinetic theory, equation (28),
k = 50/29 ≈ 1.7241. Figure 4 shows the DSMC simulation data with a best fit of the function

T =
T0

(1 + t/τ)1.71
(35)

with a fit value for τ together with the analytical result, equation (28). The asymptotic decay
due to Haff’s law [13] (for ε = const) and for a gas of viscoelastic particles [65] is also shown.

The result deviates from Haff’s law (k = 2) [13] as well as from the evolution of
temperature for a gas of viscoelastic particles (k = 5/3) [65]. Note that the deviation from
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the case of viscoelastic particles originates from the asymmetry of the probability function,
ρv(ε). Although the median of the coefficient of normal restitution equals the expression for
viscoelastic spheres [48, 65], the mean value deviates considerably because of the skewness of
the functions.

4. Laplace distributed coefficient of restitution

The cooling coefficient γ depends on the distribution ρv(ε) explicitly, as shown by
equation (21), but also implicitly, since the velocity distribution function, f (Ev), obviously
depends on the choice of ρv(ε). In section 3.2, we assumed that the deviation of the distribution
function from a Maxwellian is small, based on (a) our numerical observations, section 3.3.3,
and (b) the fact that for ε = const the second Sonine coefficient quantifying the deviation of
f (Ev) from the Maxwell distribution, is very small (a2 . 0.01) in the range of ε ≈ 0.98 being of
interest here. In this section we wish to quantify the claim that the distribution function is close
to a Maxwell distribution to—à posteriori—justify the above assumption. In this section we
are not interested in the absolute value of the coefficient of restitution (characterized by εmax),
nor in the skewness of its distribution, ρv(ε), being both of major importance for the decay
of temperature. Instead, here we consider the fluctuations of the coefficient of restitution, ε.
To this end, we reduce the full distribution function, equation (14), to the Laplace distribution,
equation (15), by neglecting the velocity dependence and the skewness of the distribution. Apart
from these details, the Laplace distribution, equation (15), is of the same characteristic shape as
equation (14), that is, it consists of two exponentials

ρL(ε) =
1

2σ
e

−|ε−〈ε〉|
σ . (36)

The Boltzmann equation describing a granular gas in the HCS at the kinetic level reads, in the
case of a velocity-independent (fluctuating) coefficient of restitution:

∂ f

∂t
=

∫
B ( f, f, ε) ρ (ε) dε, (37)

where ρ (ε) is the (velocity independent) distribution of the coefficient of restitution, and
B ( f, f, ε) is the Boltzmann collision operator corresponding to a fixed coefficient of restitution

B ( f, f, ε) = d2

∫ ∫ [
1

ε2
f
(
Ev ′

1

)
f
(
Ev ′

2

)
− f (Ev1) f (Ev2)

]
(Ev12 · Ee12 ) H (Ev12 · Ee12) dEv2dEe12. (38)

The unit vector Ee12, the sets
{
Ev ′

1, Ev ′

2

}
, {Ev1, Ev2} of the pre- and postcollisional velocities and the

relative velocity, Evi j , were introduced in equations (2)–(4).
In order to take into account the inelastic corrections to the Maxwellian distribution, we

consider a normal solution of the Boltzmann equation, i.e. a solution depending on time through
its (functional) dependence on the hydrodynamic fields. In the case of a homogeneous system,
the only hydrodynamic field which is time dependent is the temperature, and we seek a similarity
solution in the time-independent scaled velocity,

c ≡

√
mv2

2T
, (39)
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that is, we scale the velocity by the thermal velocity to compensate the decay of temperature.
While this is the standard procedure in the physical literature, the pure existence of the time-
independent similarity solutions is not mathematically proven [77]. Assuming it exists, the
Boltzmann equation, equation (37), in this case reduces to

γ

2nT
c
∂ f

∂c
=

∫
B ( f, f, ε) ρ (ε) dε. (40)

The standard way to solve the above equation is to represent the distribution function, f (Ev),
in form of a truncated series of Sonine polynomials [78], whose coefficients characterize the
deviation of f (Ev) from the Maxwell distribution:

f (Ev) = n
( m

2πT

) 3
2

e−c2
N∑

i=0

ai S
i
1
2

(
c2
)
, (41)

where N is the order of truncation, and the Sonine polynomials are defined by [78]

Si
l (x) =

i∑
p=0

0 (l + i + 1)

(i − p)!p!0 (p + l + 1)
(−x)p .

This method was first applied by Goldshtein and Shapiro [14, 54] to granular gases. Note
that there are different truncation schemes to compute the Sonine coefficients ai [16, 79–81].
Using the expansion equation (41) in equation (40) and in equation (21) for γ , and projecting
back on the Sonine polynomials, one obtains a system of equations for the coefficients
{a0, a1,a2, . . .}. This system is to be solved together with the orthogonality conditions expressed
by the requirements equations (16) and (17) that the number density and temperature are given
by the appropriate moments of the distribution function. Those conditions impose constraints on
the coefficients {ai}. In particular, due to the orthogonality properties of the Sonine polynomials,
these requirements imply a0 = 1 and a1 = 0. Truncating the series, equation (41), to the first
non-trivial order (N = 2) and assuming that the coefficient a2 is small enough so that orders
higher than linear can be neglected, one readily obtains the following expression for the
correction:

a2 = −
32
〈
ε4
〉
− 48

〈
ε2
〉
+ 16

30
〈
ε4
〉
+ 13

〈
ε2
〉
− 64 〈ε〉 − 81

, (42)

where brackets denote the average over the values of the coefficients of restitution. In the case of
constant ε, the standard expression for a2 is recovered [14, 54, 82]. Using the above expression,
together with the expansion (41) in equation (21), the cooling coefficient reads, to linear order
in a2

γ = 4
√

π

(
(1 −

〈
ε2
〉
)
(
32
〈
ε4
〉
− 48

〈
ε2
〉
+ 16

)
30
〈
ε4
〉
+ 13

〈
ε2
〉
− 64 〈ε〉 − 81

)
nd2T 3/2

√
m

. (43)

In the case of a Laplace distribution, equation (15), γ is given by

γ (〈ε〉 , σ ) =
4
√

πn2d2T 3/2

√
m

(
1 − 〈ε〉2

− 2σ 2
) (

1 + γ (1) (〈ε〉 , σ )
)
,

where

γ (1) (〈ε〉 , σ ) =
3

2

32 〈ε〉4
− 48 〈ε〉2 + 16 + 96σ 2

(
4 〈ε〉2 + 8σ 2

− 1
)

30 〈ε〉4
− 13 〈ε〉2

− 64 〈ε〉 − 81 + 2σ 2
(
180 〈ε〉2 + 360σ 2 − 13

) ,
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1γ =
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between the cooling coefficients of a gas with fixed

coefficient of restitution and of a gas with Laplace distributed random coefficient
as a function of the standard deviation σ of the distribution, for a mean value
of ε = 0.98. The discrepancy is relatively small even for large fluctuation.
Simulation and theory are in almost perfect agreement.

corresponds to the correction due to a2 to the cooling coefficient. It can be checked that
this correction is negligible (cf figure 5). For standard deviations σ < 0.1, this correction is
lower than 4% even for low values of the mean coefficient of restitution, i.e. highly inelastic
systems. For the value 〈ε〉 = 0.98 considered here, the correction is lower than 1%. In order to
characterize the influence of the fluctuations, the ratio

1γ ≡
γ (〈ε〉, σ )− γ ((〈ε〉, 0)

γ ((〈ε〉, 0)
(44)
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is plotted in figure 6 as a function of σ , for a mean coefficient of restitution 〈ε〉 = 0.98, together
with simulation results for the same quantity, obtained by fitting the cooling curve to Haff’s law.
Agreement between simulation and theory is excellent, and the fluctuations are seen to have
a rather weak influence, yielding a deviation of about 10% with respect to the non-fluctuating
case, even in the case of relatively large fluctuations σ = 0.05. (Notice that in this case, the
coefficient of restitution can exceed unity at very low probability.)

5. Conclusion

We considered the decay of temperature of a force-free homogeneous granular gas of
particles interacting by instantaneous binary collisions, where we took the stochastic nature of
particle interaction into account. To this end, we employed the velocity dependent conditional
distribution for the coefficient of restitution described recently in [40], based on both large scale
experiments and numerical simulations.

By means of kinetic theory we find a novel type of asymptotic decay of temperature
following the law T ∼ t−50/29. This function is in contrast to both standard cases of temperature
decay in dilute gases of purely repulsively interacting spheres, namely Haff’s law T ∼ t−2

corresponding to a gas where the particles interact via a constant coefficient of restitution, and
to T ∼ t−5/3 corresponding to a gas of viscoelastic spheres. The result was checked by numerical
DSMC simulations and very good agreement was obtained. Although the deviation of the new
exponent from the exponent for gases of viscoelastic spheres is rather small, both cases can be
clearly distinguished in DSMC simulations. That is, the stochastic nature of particle interaction
leaves a clear footprint in the macroscopic properties of the gas.

The deviation of the exponent from the standard cases was shown to be associated with
the asymmetry of the distribution function of the fluctuating coefficient of restitution. This
asymmetry results in a difference between the (impact velocity dependent) mean value and
the (viscoelastic) most probable value of the coefficient of restitution. Despite the obtained
qualitative difference in the decay of temperature, the effect is quantitatively small, due to the
small variances of the distribution for ε found in simulation and experiments [40].

In order to à posteriori justify the assumption of a Maxwellian velocity distribution
employed for the analytical calculation (but not for the DSMC simulations!), we considered
a simplified (velocity-independent) probability distribution of the coefficient of restitution of
Laplace type. For this case, we solve the Boltzmann equation via a truncated Sonine expansion
to obtain the velocity distribution of the gas particles. We could show that the correction to the
Maxwellian distribution due to the inelasticity is negligible indeed, justifying the overmentioned
assumption.

For non-spherical particles of more complex shape, stronger effects can be expected as a
result of a wider distribution of the fluctuating coefficient of restitution.
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Appendix. Derivation of equation (26)

Substituting equation (22) into equation (23), the cooling coefficient reads

γ =
m

12
n2d2

( m

2πT

)3
∫ ∫ ∫ (

1 −
〈
ε2
〉)

e−
m
2T (v2

1+v2
2) (Ev12 · Ee )

3 H (Ev12 · Ee) dEv1dEv2 dEe. (A.1)

Using the form equation (25) in the above equation, neglecting the variance of ρ (ε) (the latter
being of the order of the square of the small standard deviations σm and σp) and quadratic terms
in δ∗ yields

γ =
m

6
n2d2

( m

2πT

)3
δ∗

∫ ∫ ∫
e−

m
2T (v2

1+v2
2) (Ev12 · Ee )

3+η H (Ev12 · Ee) dEv1dEv2dEe +O
(
δ∗2
)
. (A.2)

First, the integral over Ee is readily performed:∫
(Ev12 · Ee)3+η H (Ev12 · Ee ) dEe = 2π

|Ev12|
3+η

4 + η
. (A.3)

Next, upon changing the variables Ev1 and Ev2 to

Euc =
m

2T
(Ev1 + Ev2) ,

Eu12 =
m

2T
(Ev1 − Ev2) ,

(A.4)

γ =
m

3π2
n2d2

( m

2T

)−

3+η

2 δ∗
1

4+η

∫ ∫ ∫
e

−

u2
c+

u2
12

2


|Eu12|

3+η dEucdEu12,

=
32

√
2

3

√
πn2d2δ∗

2η

4 + η
0
(

3 +
η

2

) T

3 + η

2

m

1 + η

2

.

(A.5)

For η =
4

25 , one obtains equation (26).
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[69] Pöschel T and Schwager T 2005 Computational Granular Dynamics (Berlin: Springer)
[70] Brey J J and Cubero D 2001 Hydrodynamic transport coefficients of granular gases Granular Gases (Lecture
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