
Instability of SPH applied to Poiseuille flow

Baofang Songa,∗, Arman Pazoukib, Thorsten Pöschela
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Abstract

Weakly compressible smoothed particle hydrodynamics (WCSPH) has been
widely applied to flows with free surfaces, multi-phase flow and systems with
complex boundary geometry. It is known, however, that WCSPH suffers
from transverse instability when applied to simple wall-bounded shear flows
such as Poiseuille and Couette flows at moderate and high Reynolds number,
Re & 1, casting the application of WCSPH to practical situations into doubt,
where the Reynolds number is frequently large. Here, we consider Poiseuille
flow for a wide range of Reynolds number and find that the instability of
WCSPH can be avoided by using appropriate ratio of smoothing length to
particle spacing in combination with a density re-initialization technique.
We also probe the source of the instability and point out the limitations of
WCSPH for wall-bounded shear flows at high Reynolds number.

Keywords: weakly compressible smoothed particle hydrodynamics,
transverse instability, smoothing length to particle spacing ratio, density
re-initialization, wall-bounded shear flow

1. Introduction

Originally, smoothed particle hydrodynamics (SPH) was proposed to solve
astrophysical problems [1, 2], however, by now there is a much wider range
of application. Because of its meshless and particle-based nature, it is fre-
quently applied to fluid flows with free surfaces [3, 5], multi-phase systems
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[5, 4, 6, 7], and systems with complex boundary geometry [8]. Very recently
it was also applied to particle laden flow fully resolving the flow around
moving particles [9]. For a comprehensive review on the fundamentals and
applications of SPH see [10, 11]. Within the SPH paradigm, there are two
different approaches to handle incompressible flow problems, namely truly
incompressible SPH (ISPH) which imposes incompressibility by solving the
pressure Poisson equation [5, 12, 13, 14] and weekly compressible SPH (WC-
SPH), which exploits an equation of state to relate density and pressure
and approximately imposes the incompressibility by assigning high speed of
sound. Mainly because of its computational simplicity, WCSPH was exten-
sively used for various flow simulations, e.g. [3, 4, 5, 8, 15]. In this paper,
we focus on its application to incompressible wall-bounded shear flow.

For shear flow at low Reynolds numbers, WCSPH yields satisfactory re-
sults, e.g. [8, 9, 15, 16, 20]. However, for larger Reynolds numbers, WCSPH
fails, in particular in simulations of simple shear flow. Imaeda & Inutsuka
[17] pointed out that in standard SPH the particle velocity cannot exactly
represent the fluid velocity, therefore, density error gradually increases and
invalidates the simulation results. Similar to a recent transport-velocity for-
mulation for SPH [7], the solution provided in [17] relies on two velocities,
i.e. the particle and fluid velocities.

For plane Poiseuille flow, Basa et al. [18] investigated the performance of
various viscous force formulations and boundary condition implementations
in WCSPH and observed failure of the method regardless of the form of
viscous force and boundary condition even at a very low Reynolds number,
Re ≈ 1. The authors identified the inherent inability of WCSPH to suppress
transverse fluctuations as the source of the instability, in agreement with
earlier studies [16, 19]. The same source of failure was found by Meister et al.
[20] who considered plane Poiseuille and Couette flows and found divergence
of SPH for Re & 65. For smaller Reynolds number, the simulation converges,
however, the deviation from the analytical solution is considerable (≈ 10%
for Re = 65). It is also concluded that regular initial particle distributions
are intrinsically unstable with respect to transverse fluctuations in Poiseuille
and Couette flows [20].

The appearance of the instability poses fundamental limitation of the
application of SPH to wall-bounded shear flows. In this paper we study
the effects of method parameters and initial particle configurations on the
performance of SPH for simple shear flow and pipe flow at low Reynolds
numbers, Re ≈ 0.01 . . . 100 and encounter the same instability as reported in
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[16, 18, 20]. We identify inappropriate choice of the ratio of smoothing length
to particle spacing as the source of the instability and propose strategies to
achieve satisfactory performance of SPH simulations.

2. SPH Methods

SPH is a Lagrangian approach to solve the Navier-Stokes equations nu-
merically using discrete quasi-particles. The discretization scheme is further
elaborated in the following sub-sections.

2.1. Continuity equation

The evolution of density can be formulated using the continuity equation

dρ

dt
= −ρ∇ · v, (1)

where ρ and v are the fluid density and velocity, respectively. In the formu-
lation of SPH, Eq. (1) reads

dρa
dt

= ρa
∑
b

mb

ρb
(va − vb) · ∇aWab, (2)

where ρa is the density of particle a, mb is the mass of particle b and ∇a

denotes the derivative with respect to the position ra of particle a. W is the
kernel function, and Wab ≡ W |r=ra−rb . In this paper, the cubic spline kernel
function given in [9] with a compact support is employed. Alternatively, the
density can also be directly obtained using

ρa =
∑
b

mbWab . (3)

Both types of density updating schemes, Eqs. (2) and (3) yield similar results
[18], however, usually the former is preferred as it produces smoother density
fields in the vicinity of boundaries [9, 15]. In this paper, we adopt the con-
tinuity equation Eq. (2) together with a density re-initialization technique
using Eq. (3) [5, 9].
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2.2. Momentum equation

The momentum equation reads

dv

dt
= −1

ρ
∇p+

µ

ρ
∇2v + f , (4)

where p is the pressure and f denotes the external body force density. Re-
garding discretization, we apply the gradient and viscous term formulation
given in [6, 8]:(

−1

ρ
∇p
)
a

= − 1

ma

∑
b

(V 2
a + V 2

b )p̃ab∇aWab , (5)(
µ

ρ
∇2v

)
a

=
1

ma

∑
b

(V 2
a + V 2

b )µ̃ab
rab · ∇aWab

|rab|2 + εh2
(va − vb) , (6)

where Va ≡ ma/ρa is the volume of particle a,

p̃ab ≡
ρapb + ρbpa
ρa + ρb

and µ̃ab ≡ 2
µaµb
µa + µb

(7)

are the inter-particle-averaged pressure and viscosity associated with par-
ticles a and b. The term εh2 in the denominator of Eq. (6), where h is
the length scale of the smoothing kernel and ε is a small number (usually
ε = 0.01), is introduced to avoid the singularity when |rab| → 0.

In our simulations we tested also alternative formulations for the pressure
gradient and the viscous term proposed in [9, 15] and no significant difference
was observed.

2.3. Equation of state

To relate pressure and density, we use the equation of state [10]

p = B

[(
ρ

ρ0

)γ
− 1

]
, (8)

where p is the dynamic pressure and B ≡ c2ρ0/γ, with the numerical speed
of sound, c, which should be large compared to the flow speed in order to
keep the density variation small. In this paper, c is taken 10 times the
maximum velocity of the steady Poiseuille flow. Following [10], we chose
γ = 7. Nevertheless, other values such as γ = 1 have also been suggested
[7, 21].
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2.4. No-slip boundary condition

The no-slip boundary condition is achieved by using dummy particles
located outside of the flow domain. We chose the implementation proposed
in [8] which has been shown robust. The properties of dummy particles are
not updated according to Navier-Stokes equations. They are rather updated
based on the following procedure: first, the fluid velocity is extrapolated to
the position of wall dummy particles to obtain v̂, then the dummy particle
velocity is calculated via

v = 2vwall − v̂ . (9)

The pressure of the dummy particles is directly extrapolated from the ambi-
ent fluid, and finally the density of dummy particles is calculated according
to the equation of state, Eq. (8). For the update of density using Eq. (2),
the actual wall velocity, vwall, is assigned to the dummy particles instead of
using Eq. (9), see [8].

The problem with this boundary condition is that the position of the wall
surface in simulation where v = 0 may not coincide with the physical wall
surface as it will be determined by the velocity extrapolation and may vary
in time, depending on the particle distribution near the wall. While this
problem is inherent to the modeling, its effect can be reduced by increasing
the spatial resolution. Further numerical errors appear due to the boundary
pressure approximation in the region near the wall. Since an accurate wall
boundary formulation for SPH is still lacking, all SPH simulations are affected
by these problems, however, their significance may depend on the specific
application and on the details of the model.

3. Failure of SPH applied to plane Poiseuille flow

Using the method described in the previous Section, we simulate plane
Poiseuille flow in three dimensions with periodic boundary condition in the
flow direction and spanwise direction. Initially the flow is at rest and driven
by a constant body force (e.g. gravity). The system is integrated in time
using a 2nd-order Runge-Kutta scheme [9]. The Reynolds number is defined
as Re = Hvmax/2ν where H is the channel gap width, ν = µ/ρ0 is the kine-
matic viscosity of the fluid, and vmax is the characteristic velocity. Herein
vmax is the maximum velocity of the steady Poiseuille flow. In all following
tests, we chose the reference density ρ0 = 1000 kg/m3, ν = 10−4 m2/s and
H = 0.2 m. We vary the body force density, f , to vary the terminal velocity
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and, thus, the terminal Reynolds number assumed for t→∞. The numerical
results are compared with the analytical solution of the transient Poiseuille
flow under constant body force [15]. Using the described geometry and vis-
cosity, the analytical solution will assume its steady state, i.e., the parabolic
laminar flow profile, at time t & 240 s.

We simulate plane Poiseuille flow using SPH for three values of the
Reynolds number, Re = {0.06, 6, 120}. Here and in the following the
value of Re indicates the Reynolds number of the asymptotic velocity pro-
file due to the chosen body force density. The lowest value, Re = 0.06,
corresponds to f = 1.2 × 10−6 m/s2 leading to an asymptotic flow with
peak velocity at the channel center vmax = 6 × 10−5 m/s and bulk veloc-
ity U = 2

3
vmax = 4× 10−5 m/s. We distribute 40 particles across the channel

width corresponding to particle spacing ratio ∆x = 0.005 m. For the smooth-
ing length, being the characteristic length scale associated with the kernel
function we chose h = 0.005 m. Thus, the characteristic ratio of the smooth-
ing length over the particle spacing assumes the value h/∆x = 1. Figure 1a
shows the velocity profiles due to the numerical and analytical solutions.
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Figure 1: Velocity profiles of plane Poiseuille flow for Re = 0.06 (a), Re = 6 (b) and
Re = 120 (c) at different time, t, starting at rest at t = 0. Lines: analytical solution;
symbols: simulation result.

At this low Reynolds number, for all times the simulation results agree, up
to good accuracy, with the transient analytical solutions. The largest time,
t = 8, 000 s (corresponding to 2.4H/vmax), is plotted against the stationary
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solution. The accuracy may be quantified by means of the L2 norm

L2 =

√√√√√√
∑
{N}

[vx − Ux (r)]2 + v2y + v2z∑
{N}

Ux (r)
, (10)

where v = (vx, vy, vz) are the velocity components in the streamwise, wall
normal and spanwise directions, and Ux (r) is the analytical streamwise ve-
locity at the (particle) position r. The summation is performed over all
N fluid particles at positions r traveling at of velocity v. The stationary
solution for Re = 0.06 shown in Fig. 1a corresponds to L2 = 0.8%.

For intermediate Reynolds number, Re = 6, we use the parameters
h = 0.005 m, h/∆x = 1, and f = 1.2 × 10−4 ms−2. Figure 1b shows the
corresponding profiles of the velocity obtained from the simulation in com-
parison with the analytical result. Again, at t = 0 the flow starts at rest. For
short time, when velocity is far below the asymptotic value, analytical and
numerical velocity profiles agree well. For larger time, t = 240 s, when the an-
alytical solution converged to the stationary state, however, large deviations
between the analytical and numerical solutions appear. For yet larger time,
the SPH solution deviates further from the analytical steady state solution
and seems to converge to a blunted velocity profile at about t = 2000 s.

Besides that, we also observed a characteristic evolution of the fluctua-
tions of the velocity profile: the velocity field first becomes noisy near the
walls; later the noise spreads out from the near wall region to almost the
entire flow domain. This is different from the case Re = 0.06, see Fig. 1a,
where the particles stay aligned in rows during the entire simulation. We be-
lieve that the inaccurate wall boundary condition introduces perturbations
of the velocity field near the wall and cause particles to undergo transverse
drift. Under shear, the (cross-shear) transverse drift of particles might cause
inhomogeneity of the particle distribution and undermine the smoothing of
SPH. [18]. This effect is not observed at Re = 0.06 because the perturba-
tions are negligible at very low Reynolds numbers. We conjecture that both
observations are related and that the perturbations of the velocity profile
causes deviation of the numerical velocity profile from the analytical one for
larger flow velocity. At t = 2000 s, the L2-error reaches 10%, which is unac-
ceptably large. We wish to point out that the described effects: noisy flow
field, blunted velocity profile, and large L2 in the stationary state, are not the
effects of turbulence since the Reynolds number is far lower than the lowest

7



Reynolds number at which turbulence can be observed in plane Poiseuille
flow (about 800 [22]).

Poiseuille flow at high Reynolds numbers is rarely discussed in the lit-
erature. Here we perform simulations for Re = 120. The parameters are
f = 2.4 × 10−3 ms−2, h = 0.004 m, and h/∆x = 1. It is known that SPH
simulations fail at large Reynolds number [18, 20] which is in agreement with
our simulation shown in Fig. 1c. Here we observe large deviations between
analytical and numerical simulations even for t = 40 s, including large noise,
asymmetry of the velocity profile and a non-physical plateau at the channel
center becomes apparent. Obviously, for Re = 120 SPH cannot be applied
to simulate Poiseuille flow.

The results suggest that WCSPH fails at Reynolds number Re & 1, in
agreement with [16, 18, 20].

4. The effect of smoothing length, h, smoothing length to particle
spacing ratio, h/∆x, initial particle configuration, and density
re-initialization on the stability of the simulation

The failure of WCSPH in plane Poiseuille flow, reported previously [16,
18, 20] and also shown in the previous Section restricts the applicability of
the method to systems with very small Reynolds number. In this section, we
analyze the sources of the errors and test measures to improve the stability
of WCSPH. Näıvely, the accuracy of SPH seems to be determined by the
system parameters h and h/∆x [23, 24, 25]. As discussed above, the initial
particle configuration and density re-initialization are also important. In this
section, we investigate the influence of these ingredients in detail.

4.1. Influence of the smoothing length, h

Figure 2 shows the L2-error, according to Eq. (10), for Re = 6 and
Re = 120 using smoothing length h = {2, 3, 4, 5}×10−3 m, where h = 0.002 m
corresponds to 100 particles across the channel width.

For Re = 6, the L2 value increases perpetually to L2 > 10% and no
convergence can be seen. For Re = 120 the error converges, however, yet
at a higher level, L2 ≈ 20%. For both cases, reducing the smoothing length
does not noticeably improve the stability, which is in agreement with [18]. We
believe that the smoothing length has only minor influence on the stability,
if any.
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Figure 2: L2 over time for simulations at Re = 6 (a) and Re = 120 (b) for different
smoothing length, h.

4.2. Influence of smoothing length to particle spacing ratio, h/∆x

Figure 3 shows L2 over time for different values of the smoothing length to
particle spacing ratio, h/∆x = {1, 1.3, 1.5}, again for Re = 6 and Re = 120.
The smoothing length was chosen h = 0.005 m for Re = 6 and h = 0.004 m
for Re = 120. We observe drastic reduction of the L2-error with increasing
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Figure 3: L2 over time for simulations at Re = 6 (a) and Re = 120 (b) for different
smoothing length to particle spacing ratio, h/∆x.
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h/∆x for both cases, Re = 6 and Re = 120. While for h/∆x = 1 and
h/∆x = 1.3 the error is still unacceptably large and possibly diverges, for
h/∆x = 1.5 we obtain L2 < 2% in the entire time domain for Re = 6 and
L2 < 5% for Re = 120. The significant influence of h/∆x for Poiseuille
flow agrees with earlier results by Ellero and Adams [24], who computed the
friction forces acting on a cylinder confined in channel flow using SPH and
found h/∆x & 1.5 necessary for stable converging results.

4.3. Influence of the initial particle distribution

In many SPH simulations, the initial particle positions are chosen regu-
larly, e.g. located on a rectangular or triangular lattice. It was mentioned,
however, that this choice of initial conditions may contribute to instability
of the numerical solution [18, 20]. In order to investigate the influence of the
initial conditions, we compare the numerical results obtained using initial
positions where the particles start at rest from a rectangular lattice with the
results using irregular initial conditions. The irregular particle setup is gener-
ated in the following way: particles start from lattice positions but at random
velocity, then the system is relaxed by solving the Navier-Stokes equations
in the absence of the external body force until the maximum velocity in the
domain is below 10−9 m/s, implying an equilibrium state. Figure 4 shows L2

over time for regular and irregular initial conditions for Re = 120.
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Figure 4: L2 over time for Poiseuille flow at Re = 120 for regular and irregular initial
conditions. Other parameters are h = 0.004 m and h/∆x = 1.5.
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As expected, both simulations lead to identical stationary states, that is,
the same L2 value up to fluctuations. The accuracy of the transient flow
is, however, better for the case of regular initial positions, thus, we cannot
confirm the argument presented in [18, 20].

4.4. Influence of density re-initialization

Updating density via the continuity equation via Eq. (3) instead of the
direct density summation via Eq. (2) imposes an inconsistency of mass, den-
sity and the volume occupied by the particles [5, 15]. Morris et al. [15]
pointed out that this is not important for flow at low Reynolds number (see
also our results at Re = 0.06), however, at larger Reynolds number, this
inconsistency may lead to a noisy flow field and inaccurate results [5]. Con-
siderable improvement could be achieved using the density re-initialization
technique [5]. This technique aims to improve the density field obtained from
Eq. (2) by frequently using the direct density summation in Eq. (3). This
involves a summation over all particles and increases the computation costs.
Fortunately this correction only needs to be performed at a much lower fre-
quency than the time-stepping. Usually this technique is performed every
10 or 20 time steps [5, 9, 20]. Colagrossi et al. [5] tested the effects of the
re-initialization frequency and showed that a frequency around 20 shows a
good performance in terms of total kinetic energy conservation.

Figure 5a shows the deviation of the simulation result from the analytical
solution quantified by L2 for Re = 120 (h = 0.004 m, h/∆x = 1.5) when
applying the density re-initialization technique together with the zeroth order
correction of the density summation [9, 20], which is important near solid
boundaries, where the support of fluid particles is incomplete.

We find that density re-initialization reduces L2 by almost an order of
magnitude to L2 < 1% for the entire simulation. Moreover, the stationary
velocity profile obtained from SPH agrees well with the analytical solution,
Fig. 5b. For further evaluation, Fig. 6a shows the fluctuations of density,
revealing a reduction of almost an order of magnitude when applying density
re-initialization. Similarly, the fluctuations of pressure are reduced as well.
As shown in Fig. 6b, evidently due to the relation between pressure and
density given by the equation of state in WCSPH. Finally, Figs. 6c,d show
the transverse velocity fluctuations in the flow domain, which illustrates the
regularization of the velocity field due to applying the density re-initialization
technique. Choosing the numerical speed of sound to be 10 times the maxi-
mum flow velocity (0.12 m/s), the density variation obtained from the simu-
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Figure 5: (a) L2 over time for simulations of Poiseuille flow Re = 120 with and without
density re-initialization. (b) Velocity profiles at t = 480 s obtained from SPH (h = 0.004 m,
h/∆x = 1.5, density re-initialization ) in comparison with the analytical solution.

lation without density re-initialization is below 1%. However, the transverse
velocity fluctuations close to the wall boundary can reach about 1.7% of the
centerline velocity. Density re-initialization reduces the velocity fluctuations.
Nevertheless, this effect is only significant far from the wall where the fluc-
tuations almost vanish, see Fig. 6c,d. Velocity fluctuations near the wall
boundary are not significantly reduced which is due to the fact that they are
rooted in the inaccurate boundary velocity and pressure approximation.

As explained in Sec. 2.4, the velocity boundary condition implementa-
tion introduces fluctuations to the wall position which depend on the particle
distribution near the wall which in turn leads to perturbations of the flow.
Moreover, the boundary pressure approximation also generates additional
velocity disturbances near the wall. These two factors add up and influence
the flow in a similar manner as a rough wall. Following this picture, dis-
turbances of the flow originate from the wall and propagate from there. At
low Reynolds numbers, these fluctuations are small and spread very slowly.
Consequently SPH was found to give accurate result at very low Reynolds
number in the literature. However, as Re increases, the disturbances arising
from the wall become larger and spread faster to other flow regions, which
results in a noisy flow field. This seems to be the main source of transverse
disturbances, which cause inhomogeneous particle distrubution and reduce
the accuracy of SPH, called transverse instability [18, 20]. This effect is par-
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Figure 6: Comparison of the simulation results with and without density re-initialization
for Re = 120. (a) Density normalized by the reference density ρ0 = 1000 kg/m

3
; (b)

pressure; (c) velocity normal to the wall; (d) spanwise velocity. Parameters are h =
0.004 m, h/∆x = 1.5, data are taken at t = 120 s when the difference of the L2 values is
maximal, see Fig. 5a.

ticularly significant in flows where the wall-shear dominates the flow state,
such as simple wall-bounded shear flow. Our simulations show that this
instability can be largely suppressed by choosing proper system parameter
h/∆x and the density re-initialization technique.

5. Pipe flow

In order to demonstrate that the above arguments are relevant for other
wall-shear flows too, herein we study the influence of the smoothing length
to particle spacing ratio, h/∆x, and the density re-initialization scheme for
pipe flow at Re = 120 which is much larger than usual test cases reported
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in the literature. The Reynolds number is defined as Re = UD/ν where U
and D are the mean flow speed and pipe diameter, respectively. We assume
the following parameters: D = 0.2 m, ρ0 = 1000 kg/m3, ν = 10−4 m2/s,
pipe length L = 0.06 m and the constant driving body force density f =
4.8 × 10−3 ms−2. The corresponding stationary Hagen-Poiseuille flow with
parabolic velocity profile has a peak velocity of 0.12 m/s at the center of the
pipe. To model the pipe geometry, we distribute particles on a lattice in a
rectangular box and mark particles inside the circular pipe as fluid particles
and the rest as wall particles. We only keep wall particles that are within a
distance about 3 times the average particle spacing from the pipe wall and
use them to impose the no-slip boundary condition at the wall. We choose
h = 0.004 m and investigate the effect of density re-initialization and spacing
ratio for h/∆x = 1.0 and and h/∆x = 1.5.

Figure 7a shows the L2 according to Eq. (10) with the analytical so-
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Figure 7: SPH simulation of pipe flow under constant driving body force at Re = 120.
(a) L2 over time time for h/∆x = {1, 1.5} with and without density re-initialization. (b)
Velocity profile at time t = 260 s obtained from the SPH simulation in comparison with
the analytical result [16]. The simulation result with and without density re-initialization
coincide up to line width.

lution given in Ref. [16] over time, for different values of h/∆x, with and
without density re-initialization. Similar to Poiseuille flow, we obtain great
improvement of the quality of the numerical solutions, expressed by consid-
erable reduction in L2 when increasing h/∆x from 1 to 1.5. Considering the
results for h/∆x = 1.5 (green line in Fig. 7a) we observe a non-monotonous
evolution of L2 which grows up to 7%. This implies the accuracy of the tran-
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sient solution is clearly worse than the accuracy of the stationary solution
which agrees up to L2 = 2% with the analytical result. The inability to
accurately capture the transient flow is a severe drawback of standard SPH.
This problem can be suppressed using the density re-initialization technique

Similar improvement of the simulation result can be seen in Fig. 7b, where
the velocity profile at time t = 260 s (corresponding to 80 convective time
units D/U) is shown. Increasing h/∆x and using density re-initialization
does not only yield a velocity profile much closer to the analytical solution
but also reduces the noise level significantly.

The deviation of the stationary velocity profile obtained from SPH from
the analytical solution, expressed by a finite L2 value for large time (see Fig.
7a) is partially due to the imperfect modeling of the cylindrical boundary
described before. In fact, due to our modeling, the computational domain
used for SPH is a pipe with small streamwise groove-like structures with
characteristic height and azimuthal separation of about ∆x. This roughness
perturbs the flow and contributes to the noisy flow field in particular close
to the wall boundary; see the broad distribution of the streamwise velocity
of particles close to the boundary r = 0.1 m in Fig. 7b.

Again, we point out that these velocity fluctuations are certainly not due
to turbulence since the system operates in a regime far below the lowest
Reynolds number at which turbulence can be observed in pipe flow (Re ≈
1760 [26]).

The results presented in this section show that without careful parameter
choice and the density re-initialization SPH fails for the simulation of pipe
flow at low Reynolds number, Re = 120, just in the same way and due to
the same reasons as for plane Poiseuille flow discussed in Sec. 4.

6. Conclusion

We investigated the stability of WCSPH simulations for the example of
Poiseuille flow with respect to smoothing length h, smoothing length to par-
ticle spacing ratio h/∆x, initial setup of the fluid particles, and density
re-initialization. The accuracy of the simulation results was quantified by
evaluating the deviation of the numerical flow velocity field from the ana-
lytical solution at late time when the stationary regime is assumed and by
the L2 norm as a function of time, characterizing the deviation of the entire
flow field as obtained from the SPH simulation from the transient analytical
solution.
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In agreement with the literature [16, 18, 19, 20] we found that SPH de-
livers quantitatively precise results only for the case of very small Reynolds
number, e.g., Re = 0.06 while it fails dramatically for larger Reynolds num-
ber. Reducing the smoothing length, h, does not improve the stability of
the simulation. However, increasing h/∆x for fixed value of h strongly im-
proves the results. For our setup we found that h/∆x & 1.5 is necessary
to obtain reliable results for Poiseuille flows at moderate and high Reynolds
number (Re &1). This requirement considerably increases the computational
costs since the smoothing length to particle spacing ratio affects the size of
particles neighbor list. For our system, in contradiction to [20], the choice
of irregular initial particle positions leads to significantly larger error than
regular initial positions, in particular during the transient time, while the
asymptotic velocity profile was not affected by the initial particle positions.
We also showed that density re-initialization is necessary for WCSPH that
adopts continuity equation for density update, except for very small Reynolds
number. This technique reduces density, pressure, and velocity fluctuations
in the flow domain, especially in regions far from the wall boundary.

When modeling the domain boundary by means of dummy SPH particles,
the boundary velocity and the boundary pressure approximation introduces
additional velocity disturbances near the wall. The disturbances gradually
propagate to the entire domain, resulting in noisy fields of flow velocity and
other hydrodynamic fields. Evidently, modeling the boundaries with discrete
particles does not allow for the description of perfectly smooth and imperme-
able walls. The resulting irregularity due to this approach may be understood
as a certain roughness which in turn may be quantified through the specific
boundary condition implementation and the corresponding parameters. We
believe that a quantitative description of this numerical roughness would al-
low to apply SPH for simulations of fluid flow in the vicinity of physically
rough walls, which is subject of current research.
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