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A hydrodynamic description of dilute binary gas mixtures comprising smooth inelas-
tic spheres interacting by binary collisions with a random coefficient of restitution is
presented. Constitutive relations are derived using the Chapman-Enskog perturbative
method, associated with a computer-aided method to allow high order Sonine polynomial
expansions. The transport coefficients obtained are checked against DSMC simulations.
The resulting equations are applied to the analysis of a vertically vibrated system. It is
shown that differences in the shape of the distributions of coefficient of restitution are
sufficient to produce partial segregation.

1. Introduction

Granular materials, i.e. collections of macroscopic solid grains, are ubiquitous in Nature
and of central importance in industry. They exhibit a fascinating and often counter-
intuitive range of phenomena, behaving at times like solids (when at rest), liquids, or gases
(Goldhirsch (2003); Jaeger et al. (1996)). This last regime, characterized by the fact that
the grains interact by near-instantaneous binary collisions, is reminiscent of the classical
picture of an atomic gas, and Kinetic Theory is expected to provide a reliable description
of the kinetics and hydrodynamics of the system. This analogy is of course not complete
since the grain interactions are dissipative, this property constituting the source of much
of the rich phenomenology exhibited by granular gases (Goldhirsch (2003)): Breaking of
scale separation, clustering (Goldhirsch & Zanetti (1993)) and collapse, just to name a
few. The dissipative nature of the collisions is standardly taken into account through
the introduction of a coefficient of normal restitution, relating the normal component
of the relative velocities of the colliding particles at contact before and after collision.
The common way of modeling granular gases is to consider them as a collection of hard
spheres whose collisions are characterized by a fixed coefficient of restitution. Though
detailed analysis and experiments indicate that the coefficient depend on impact velocity
(Schwager & Pöschel (1998); Pöschel et al. (2003)), the fixed coefficient of restitution
has long been recognized to provide a reliable description. An aspect that has however
been seldom addressed so far is the fact that even for virtually perfect spheres like ball
bearing, significant scatter is observed in experimental measurement of the coefficient of
restitution (Lifshitz & Kolsky (1964); Montaine et al. (2011)), that can be associated
with microscopic surface asperities (Hatzes et al. (1988); Montaine et al. (2011)). A
natural way of taking this scatter into account theoretical is to consider a randomly
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fluctuating coefficient of restitution (Gunkelmann et al. (2014)). This type of model
was also introduced in other contexts such as to model heating through collisions in a
vertically vibrating granular system (Barrat et al. (2001); Barrat & Trizac (2003)), to
describe a gas of one-dimensional particles accounting for internal degrees of freedom
(Giese & Zippelius (1996); Aspelmeier & Zippelius (2000)) and in gases on Maxwellian
molecules (Carrillo et al. (2009)) to investigate the high velocity tail of the distribution
function. However, to our knowledge, no continuum description of such systems has been
derived so far. It is the purpose of the present article to fill this gap, and derive a
hydrodynamic description of a granular gas with random coefficient of restitution.
This description is achieved here for a binary mixture. In the polydisperse case (which
corresponds to the typical situation encountered in Nature and industry), granular gases
exhibit a host of specific effects, the most prominent being undoubtedly their tendency
to spontaneously segregate under external forcing (Ottino & Khakhar (2000); Shinbrot
& Muzzio (2000); Kudrolli (2004); Farkas et al. (2002); Rapaport (2001)), as a result of
small differences in the properties of their constituents: Mass, shape, frictional (Kondic
et al. (2003); Ulrich et al. (2007)) or inelastic (Serero et al. (2006); Brito et al. (2008))
properties differences may yield segregation. In the case of dilute granular gases, one of
the prominent segregation mechanisms is the Soret effect (Hsiau & Hunt (1996); Schröter
et al. (2006)) or its single-particle manifestation, thermophoresis, which drives large or
massive particles to move down temperature gradients (Goldhirsch & Ronis (1983a,b)).
Thermal diffusion in mixtures of granular gases has therefore been invoked (Arnarson &
Willits (1998); Brey et al. (2005); Serero et al. (2006); Garzó (2006, 2008); Jenkins &
Yoon (2002); Yoon & Jenkins (2006); Trujillo et al. (2003)) to obtain segregation criterion
in vibrated systems under gravity, and inelasticity was shown to have a direct influence
of segregation (Serero et al. (2006)): For near-elastic collisions particles with identical
mass and size may segregate on the basis of differences in their inelastic properties alone,
when subject to a temperature gradient. This was corroborated in molecular dynamics
(MD) simulations of vertically vibrated granular gas mixtures (Serero et al. (2006); Brito
et al. (2008)). It is yet another objective of this work to analyze some of the implications
of the stochastic nature of the coefficient of restitution, and in particular a similar direct
effect of the fluctuations, on the segregation properties of granular gases.
The structure of this paper is as follows. Section 2 provides a description of the system
studied below, basic definitions, and provides the kinetic formulation of the problem,
as well as the hydrodynamics description of the system. Section 3 describes the method
employed to derive the constitutive relation, the computation of the transport coefficients,
and presents the computer-aided method we employ for the analysis. In section 4 the
results are checked by numerical DSMC simulations. Section 5 presents an application of
the results to show the existence of a stochasticity-induced segregation. Finally, Section
6 provides concluding comments. A series of Appendices contains some technical details.

2. Formulation of the problem

Consider a mixture of smooth hard spheres, composed of species A and B, of masses
mA and mB , and diameters dA, and dB . The decay of kinetic energy in a collision
is characterized by a coefficient normal restitution e, assumed to be independent of
the initial normal relative velocity, defined as the ratio between the postcollisional and
precollisional normal relative velocity of the colliding spheres.

The transformation of velocities in a collision between a sphere A and a sphere B
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reads:

v1 = v′
1 − (1 + e)MBA

(
k · v′

12

)
k

v2 = v′
2 + (1 + e)MAB

(
k · v′

12

)
k (2.1)

where Mαβ ≡ mα

mα+mβ
for {α, β} ∈ {A,B}, primes denote precollisional velocities, the

indices ‘1’ and ‘2’ pertain here to the species A and B, respectively, v12 ≡ v1 − v2, and
k is a unit vector pointing from the center of sphere A to that of sphere B. The standard
description of binary mixtures of inelastic gases involves three coefficients of restitution,
one for each type of collisions. In the case of fluctuating coefficient of restitution, these
have to be replaced by three distributions for e, denoted here ρAA (e), ρAB (e), and
ρBB (e). The kinetic description of a binary mixture of dilute gas requires two distribution
functions, fA(v, r, t) and fB(v, r, t). Their dynamics is described by a set of two coupled
Boltzmann equations:

Dfα ≡ ∂fα

∂t
+ v1.∇fα = Bαα(fα, fα, ραα) + Bαβ(fα, fβ , ραβ), (2.2)

for {α, β} ∈ {A,B}, with α 6= β. The Boltzmann operator Bαβ(fα, fβ , ραβ) corresponding
to α-β collisions in the case of (impact velocity independent) stochastic coefficient of
restitution is a generalization of that defined for mixtures of gas interacting with constant
coefficients of restitution (Chapman & Cawling (1970)). Its dependence on the coefficient
of restitution is modified to include a functional dependence on the distributions ραβ (e)
for the coefficients of restitution, corresponding to an average over the values of e, with
a weight given by ραβ (e):

Bαβ(fα, fβ , ραβ) = d2αβ

∫ ∫ ∫

v12·k>0

ραβ (e)

[
fα(v

′
1)fβ(v

′
2)

e2
− fα(v1)fβ(v2)

]

× (v12 · k) dv2 dkde,

(2.3)

where dαβ ≡ dα+dβ

2 . Here v1 and v′
1 pertain to species α, and v2 and v′

2 pertain to β.
From a hydrodynamic point of view, the system is described by a set of fields correspond-
ing to averages of the conserved quantities in collisions, namely the two number densities
nA and nB (or alternatively the total number density n ≡ nA+nB and the concentration
c ≡ nA

n of species A), the velocity V (or momentum density), which is defined as a mass
average of the species’ mean velocities, and the temperature field, T , defined as (twice)
the mean fluctuating kinetic energy of a fluid particle. Notice that in the case of inelastic
gases, the temperature is not a proper hydrodynamic field, as it corresponds to the mean
kinetic energy, which is dissipated in collision. The hydrodynamic fields can be expressed
in terms of the distribution function the following way: The number density for species
α is given by:

nα =

∫
fα(v) dv (2.4)

the corresponding mass density being ρmα
= mαnα. The overall number density is n =

nA + nB , and the overall mass density is ρm ≡ ρmA
+ ρmB

. The mixture’s velocity field
is:

V =
1

ρm
(ρmA

VA + ρmB
VB) . (2.5)

where Vα is the velocity field of species α, given by:

Vα =
1

nα

∫
fα(v) v dv (2.6)
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Vα is not a hydrodynamic field and it needs to be expressed as a functional of the
hydrodynamic fields. The granular temperature of species α is defined by:

Tα =
1

nα

∫
fα(v) mα (v −V)2 dv (2.7)

The mixture’s granular temperature (average fluctuating kinetic energy multiplied by 2)
is defined by:

T ≡ 1

n
(nATA + nBTB) . (2.8)

The equations of motions for the hydrodynamic fields can be readily obtained upon
considering moments of the Boltzmann equations (although their validity is not restricted
to the range of validity of the latter). Multiplying the Boltzmann equations by 1, mαv,
and mαu

2, integrating, and summing over the species provide kinetic expressions for the
particle flux densities, stress tensor, and heat flux. The equation of motion for the number
density, nα, with α ∈ {A,B}, is obtained by integrating Eq. (2.2) over velocities::

Dnα

Dt
= −divJα − nα divV (2.9)

where D
Dt =

∂
∂t +V · ∇ is the material derivative and

Jα = nα (Vα −V) (2.10)

is the particle flux density of species α. As Vα, the velocity field of species α, or equiv-
alently, the flux, Jα, is not a hydrodynamic field, it must be given by an appropriate
constitutive relation. The equation of motion obeyed by the velocity field (in the absence
of external force) can be written in the following standard form, obtained by multiplying
Eq. (2.2) by mαv , integrating on velocities, and summing over the two species:

ρm
DVi

Dt
= −∂Pij

∂xj
(2.11)

The kinetic expression for the stress tensor (in the dilute case, which excludes the colli-
sional contribution) is given by:

Pij = mA

∫
fA (v)uiuj dv +mB

∫
fB (v)uiuj dv, (2.12)

where u ≡ v − V is the peculiar (fluctuating) velocity. The granular temperature field
obeys the equation of motion (obtained by integrating (2.2) multiplied by mαu

2 and
summing the contributions of the two species), reads:

n
DT

Dt
= T div J− div Q− 2Pij

∂Vi

∂xj
− Γ, (2.13)

where J ≡ JA + JB is the total particle flux, Q the heat flux, given by:

Q =

∫
fA (v)mAu

2udv +

∫
fB (v)mBu

2udv (2.14)

and Γ is the energy sink term, which accounts for the rate of loss of energy due to the
inelasticity of the collisions (and therefore vanishes in the elastic limit). It is given by:

Γ = ΓA + ΓB + ΓAB (2.15)

The contributions to Γ are:

Γα ≡
∫ ∫ ∫

ραα (e)

(
1− e2

)
mα

8
πd2αfα (v1) fα (v2) |v12|3 dv1dv2de, (2.16)
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and

ΓAB ≡
∫ ∫ ∫

ρAB (e)

(
1− e2

)
mABπd

2
AB

2
fA (v1) fB (v2) |v12|3 dv1dv2de. (2.17)

where mAB ≡ mAmB

mA+mB
is the reduced mass and dAB = dA+dB

2 .

3. Constitutive relations and transport coefficients

3.1. The Chapman-Enskog (CE) expansion

In order to derive the constitutive relation for the fluxes (2.10, 2.12, 2.14) and the sources
(2.15), we proceed to solve Eqs. (2.2) by performing a Chapman-Enskog expansion. The
latter consists in a perturbative gradient expansion of the distribution function (formally
in powers of the Knudsen number) around a reference state corresponding to a homo-
geneous solution of the Boltzmann equation (the Maxwellian equilibrium distribution

function for elastic systems, fMα = nα
(
γα

π

) 3

2 e−γαu2

, with γα ≡ 3mα

2T , or the distribution
function corresponding to the Homogeneous Cooling State in the present case (Brey et al.
(1998)), see below). The distribution function is thus written:

fα ≡ fMα φα = fMα

(
φ(0)α + φKα + φK

2

α + ...
)

(3.1)

where φα denotes the correction to the Maxwellian elastic equilibrium distribution, and
the superscripts denote the order of each term in gradient expansion. In addition to the
assuming small gradients (or more precisely Knudsen numbers), the CE method relies
on the assumption that the dependence of the distribution function on space and time is
implicit through its functional dependence on the fields and that there is no additional
space or time dependence. In the case at hand the pertinent hydrodynamic fields are n,
c ≡ nA

n (or alternatively nA and nB), V, and T , so that the time derivative Df in Eqs.
(2.2) can be written:

Dfα = φαf
M
α

[
D lnnα + 2γαuiDVi +

(
γu2 − 3

2

)
D lnT

]
+ fMα Dφα (3.2)

The result of the application of the operator D on any functional of the hydrodynamic
fields can thus be in turn expanded in powers of gradients, by making use of the hydro-
dynamic equations, (2.9), (2.11), (2.13): Df = D(0)f + DKf + ..., where the subscript
identifies the order in expansion. Upon substituting Eq. (3.1) and the expansion of Df
in equation (2.2), and equating the terms of the same order in expansion on both sides
of the equation, one obtains a hierarchy of equations.

3.1.1. Zeroth order correction: The Homogeneous Cooling State (HCS)

The homogeneous cooling state (HCS) of a granular gas is defined as a state of vanishing
velocity and homogeneous density fields. Considering normal solutions, the distribution
functions are rendered ‘time independent’ by scaling the velocities by the thermal speed of
the species comprising the mixture, i.e, the distribution is assumed to depend on velocity
through the variable γαu

2. Since all gradients vanish in this state, the corresponding
distribution function can be taken to serve as the zeroth order in the CE expansion. Using
Eqs. (2.9), (2.11) and (2.13), one has: D(0) lnnα = 0, D(0)Vi = 0, and D(0) lnT = − Γ

nT .
The zeroth order of Eq. (3.2) therefore reads:

D(0)fα = −fMα
(
γαu

2
(
φ(0)α − φ(0)′α

)
− 3

2
φ(0)α

)
Γ

nT
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where prime denotes derivative with respect to γαu
2, and the temperature dependence of

φ(0) through its argument γαu
2 has been taken into account. The two coupled Boltzmann

equations (2.2) reduce to the following equations for the corrections φ
(0)
α :

−fMα
(
γαu

2
(
φ(0)α − φ(0)′α

)
− 3

2
φ(0)α

)
Γ

nT
(3.3)

=

∫
Bαα

(
fMα φ(0)α , fMα φ(0)α , ραα (e) , e

)
de+

∫
Bαβ

(
fMα φ(0)α , fMβ φ

(0)
β , ραβ (e) , e

)
de,

where the Boltzmann operator Bαβ is defined in Eq. (2.3). These equations need to be
solved subject to the following constraints:

∫
fAdu = nA (3.4)

∫
fBdu = nB (3.5)

∫
fAmAu

2du+

∫
fBmBu

2du = nT (3.6)

which express the fact that the two number densities and the temperature field have to
be given by the appropriate moment of the distribution function.

3.1.2. First order correction

Computing the transport coefficients to Navier-Stokes order requires calculating the cor-
rection φKα corresponding to first order in gradient. Carrying out the procedure described
above to first order, one obtains the following expression for φKα (Appendix A provides
details of the derivation):

φKα = ΦK,T
α

(
γαu

2
)√

γαu · ∇ lnT +ΦK,n
α

(
γαu

2
)√

γαu · ∇ lnn

+ΦK,c
α

(
γαu

2
)√

γαu · ∇ ln c+ΦK,V
α

(
γαu

2
)
γ

3

2

αuu:∇V (3.7)

where overbar denotes the traceless symmetric part of any second rank tensor, A: Aij ≡
1
2

(
Aij +Aji − 2

3δijAkk

)
, and the functions ΦK,T

α ,ΦK,c
α , ΦK,n

α and ΦK,V
α are isotropic

functions of the rescaled peculiar velocity γαu
2, and obey the following set of equations:

The function ΦK,V
α obeys:

(
L(1)
αα + L(2)

αα + L
(1)
αβ

)
{ΦK,V

α

(
γαu

2
)
γ

3

2

αuu}+ L
(2)
αβ{Φ

K,V
β

(
γβu

2
)
γ

3

2

β uu}

−
√
6π

9

nd2αβ√
m0

Γ̃
√
TfMα

((
H
{
ΦK,V

α

}
+ 3
)
ΦK,V

α

(
γαu

2
)
γ

3

2

αuu
)
= 2fMα γα

(
φ(0)α − φ(0)′α

)
uu,

(3.8)

where m0 ≡ mA +mB , and Γ̃ ≡ 9√
6π

√
m0

n2d2

AB
T

3

2

Γ, the function ΦK,T
α obeys:

(
L(1)
αα + L(2)

αα + L
(1)
αβ

)
{ΦK,T

α

(
γαu

2
)√

γαu}+ L
(2)
αβ{Φ

K,T
β

(
γβu

2
)√

γβu}

−
√
6π

9

nd2αβ√
m0

Γ̃
√
TfMα

((
H
{
ΦK,T

α

}
+

3

4

)
ΦK,T

α

(
γαu

2
)√

γαu

)

=fMα

((
γαu

2 − nmα

ρm

)(
φ(0)α − φ(0)′α

)
− 3

2
φ(0)α

)
u

(3.9)
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the function ΦK,n
α obeys:

(
L(1)
αα + L(2)

αα + L
(1)
αβ

)
{ΦK,n

α

(
γαu

2
)√

γαu}+ L
(2)
αβ{Φ

K,n
β

(
γβu

2
)√

γβu}

−
√
6π

9

nd2αβ√
m0

Γ̃
√
TfMα

((
H
{
ΦK,n

α

}
+ 2
)
ΦK,n

α

(
γαu

2
)√

γαu− ΦK,T
α

(
γαu

2
)√

γαu
)

=fMα

(
φ(0)α − nmα

ρm

(
φ(0)α − φ(0)′α

))
u

(3.10)

for {α, β} ∈ {A,B}, with α 6= β. The function ΦK,c
A obeys:

(
L
(1)
AA + L

(2)
AA + L

(1)
AA

)
{ΦK,c

A

(
γAu

2
)√

γBu}+ L
(2)
AB{Φ

K,c
B

(
γBu

2
)√

γBu}

−
√
6π

9

nd2AB√
m0

Γ̃
√
TfMA

×
((

H
{
ΦK,c

A

}
+ 2
)
ΦK,c

A

(
γAu

2
)√

γAu− ∂ ln Γ̃

∂c
ΦK,T

α

(
γαu

2
)√

γαu

)

=fMA

(
φ
(0)
A + c

∂φ
(0)
A

∂c

)
u

(3.11)

and the function ΦK,c
B verifies:

(
L
(1)
BB + L

(2)
BB + L

(1)
BA

)
{ΦK,c

B

(
γBu

2
)√

γBu}+ L
(2)
BA{Φ

K,c
A

(
γAu

2
)√

γAu}

−
√
6π

9

nd2AB√
m0

Γ̃
√
TfMB

×
((

H
{
ΦK,c

B

}
+ 2
)
ΦK,c

B

(
γBu

2
)√

γBu− ∂ ln Γ̃

∂c
ΦK,T

B

(
γBu

2
)√

γBu

)

=fMB

(
− c

1− c
φ
(0)
B + c

∂φ
(0)
B

∂c

)
u

(3.12)

where

L
(1)
αβφ

K
α ≡

∫
Bαβ

(
fMα φKα , f

M
β φ

(0)
β , ραβ (e) , e

)
de

L
(2)
αβφ

K
β ≡

∫
Bαβ

(
fMα φ

(0)
β , fMβ φKβ , ραβ (e) , e

)
de

are linearized Boltzmann operators, and the operator H is defined by

H{Φ} ≡ γαu
2
(
(lnΦ)

′ − 1
)

3.2. Constitutive relations

Inserting Eq. (3.7) into the definitions (2.10), (2.12), and (2.14), one obtains the con-
stitutive relations for the number density flux, stress tensor, and heat flux. While their
general form can be derived based on simple tensorial considerations, the transport co-
efficients are given below in terms of integrals of the corrections ΦK,T

α , ΦK,n
α ,ΦK,c

α , and
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ΦK,V
α . To Navier-Stokes order (linear in the gradients of the hydrodynamic fields) the

number density flux Jα is given by:

Jα =

√
6

6

nα

n

1

d2AB

√
T

mα

(
κTα∇ lnT + κnα∇ lnn+ κcα∇ ln c

)
, (3.13)

where n = nA+nB is the total number density of the mixture, c = nA

n is the concentration
of A particles, and the transport coefficients κTα , κ

n
α and κcα depend on the parameters

characterizing the particles (masses, diameters and the distributions of coefficients of
restitution) and the concentration field, c. They are given by:

κTα = nαd
2
AB

8

3
√
π

∫ ∞

0

e−u2

ΦK,T
α

(
u2
)
u4du

κnα = nαd
2
AB

8

3
√
π

∫ ∞

0

e−u2

ΦK,n
α

(
u2
)
u4du

κcα = nαd
2
AB

8

3
√
π

∫ ∞

0

e−u2

ΦK,c
α

(
u2
)
u4du

Similarly, the heat flux is given by:

Q =
5
√
6

18

1

d2AB

T 3/2

√
m0

(
λT∇ lnT + λn∇ lnn+ λc∇ ln c

)
(3.14)

where in terms of the first order corrections:

λT =
16

15
√
π
nd2AB

∫ ∞

0

e−u2

(
c
ΦK,T

A

(
u2
)

√
MA

+ (1− c)
ΦK,T

B

(
u2
)

√
MB

)
u6du

λn =
16

15
√
π
nd2AB

∫ ∞

0

e−u2

(
c
ΦK,n

A

(
u2
)

√
MA

+ (1− c)
ΦK,n

B

(
u2
)

√
MB

)
u6du

λc =
16

15
√
π
nd2AB

∫ ∞

0

e−u2

(
c
ΦK,c

A

(
u2
)

√
MA

+ (1− c)
ΦK,c

B

(
u2
)

√
MB

)
u6du

where Mα ≡ mα

m0

. Finally, the stress tensor Pij to Navier-Stokes order assumes the form:

Pij = pδij − µ Dij (3.15)

where p ≡ nT
3 is the pressure,

Dij =
1

2

(
∂Vi

∂xj
+
∂Vj

∂xi

)
− 2

3
δij divV (3.16)

is the symmetrized traceless rate of strain tensor, and µ is the shear viscosity, given by:

µ = −4π
√
6

45
n
√
m0T

∫ ∞

0

e−u2
(
c
√
MAΦ

K,V
A

(
u2
)
+ (1− c)

√
MBΦ

K,V
B

(
u2
))
u6du

(3.17)
The constitutive relations have been given here in terms of gradients of the concen-

tration, number density, temperature, and velocity. Other gradients can naturally be
employed, yielding different forms for the constitutive relations, (see e.g., Landau & Lif-
shitz (1959); de Groot & Mazur (1969); Garzó & Dufty (2002)), trivially related to those
given above.
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3.3. Transport coefficients: Sonine polynomial expansion and the generating function
method

Following standard treatment, in order to solve Eqs. (3.3, 3.8, 3.9, 3.10, 3.11, 3.12), the

corrections distribution φ
(0)
α , ΦK,V

α , ΦK,T
α , ΦK,n

α , and ΦK,c
α are approximated by truncated

series in Sonine polynomials. For extreme values of the parameters, such as very low values
of the coefficients of restitution (or large distributions) or large mass ratios, the use of high
order truncations of Sonine polynomial series is crucial, but forbiddingly tedious to carry
out. To this end we employ a computer-aided method (Noskowicz et al. (2007); Serero
et al. (2007)) which exploits the fact that the Sonine polynomials can be derived from

their respective generating functions, Gm (x; s) ≡ (1− s)
−m−1

e−
s

1−s
x =

∞∑
p=0

spSp
m (x):

Defining, for any set of variables {x1, .., xk} and integers {p1, .., pk}, ∂̃xp1
1

,..,x
pk
k
:

∂̃xp1
1

,..,x
pk
k

≡ lim
x1,..,xk→0

1

p1!...pk!

∂p1+..+pk

∂x
p1

1 ..∂x
pk

k

, (3.18)

one has:

Sp
m = ∂̃spGm (x; s) (3.19)

One can therefore easily calculate a generating function for the action of a linear operator
(such as the integrals required in the process of solving the hierarchy of equations result-
ing for the Chapman Enskog expansion) on a Sonine polynomial by evaluating its action
on Gm. In addition, it turns out that most of the generating functions that are com-
puted in the sequel can be obtained in terms of successive derivatives ”super-generating”

functions J
(k)
αβ , see Appendix C, Eq. (C 3). Increasing the order of the truncated series

therefore amounts to computing higher order derivatives of known functions, which can
be conveniently achieved by a symbolic manipulator.

We proceed first to the evaluation of the distribution function for the homogeneous

cooling state. The function φ
(0)
α is written in the form:

φ(0)α ≡
Nt∑

p=0

h(p)α S
(p)
1

2

(
γαu

2
)
=

Nt∑

p=0

h(p)α ∂̃spG 1

2

(
γαu

2; s
)

(3.20)

where Nt is the order of truncation. Upon substituting the form (3.20) in Eq. (3.3) and
projecting on the Nth order Sonine polynomial SN

1

2

(
γαu

2
1

)
= ∂̃sNG

(
γαu

2
1, s
)
one obtains:

√
π

3
Γ̃

Nt∑

p=0

h
(p)
A ∂̃spwN R̂(s, w) =

M3
A

π3

d2A
d2AB

nA

n

Nt∑

p,q=0

∂̃sptqwN B̂AA(w, s, t)h
(p)
A h

(q)
A

+
M

3

2

BM
3

2

A

π3

nB

n

Nt∑

p,q=0

∂̃sptqwN B̂AB(w, s, t)h
(p)
A h

(q)
B (3.21)

√
π

3
Γ̃

Nt∑

p=0

h
(p)
B ∂̃spwN R̂(s, w) =

M3
B

π3

d2B
d2AB

nB

n

Nt∑

p,q=0

∂̃sptqwN B̂BB(w, s, t)h
(p)
B h

(q)
B

+
M

3

2

AM
3

2

B

π3

nA

n

Nt∑

p,q=0

∂̃sptqwN B̂BA(w, s, t)h
(p)
B h

(q)
A (3.22)

where the generating function, R̂(s, w), which corresponds to the left hand side of Eqs.
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(3.3) is:

R̂(s, w) ≡ 1

π
3

2

∫
e−u2

G 1

2

(
u2, w

) [3
2
G 1

2

(
u2, s

)
− u2

(
G 1

2

(
u2, s

)
− ∂

∂u2
G 1

2

(
u2, s

))]
du

=
3

2

(1− s)w

(1− ws)
5

2

(3.23)

The generating function B̂αβ (w, s, t) corresponds to the Boltzmann operator, and can
be written in terms of the “super-generating” functions defined in Eq. (C 3):

B̂αβ (w, s, t) ≡
∫
ραβ (e)

∫
GN

1

2

(
Mαu

2
1, w

) ∫ ∫

u12·k>0

[
e−Mαu′2

1
−Mβu

′2
2

e2
G 1

2

(
Mαu

′2
1 , s

)

×G 1

2

(
Mβu

′2
2 , t
)
− e−Mαu2

1
−Mβu

2

2G 1

2

(
Mαu

2
1, s
)
G 1

2

(
Mβu

2
2, t
) ]

(u12·k) du1du2dkde

=
1

(1− s)
3

2 (1− t)
3

2 (1− w)
3

2

×
[
J
(1)
αβ

(
Mαw

1− w
, 0,

(
1

1− s

)
Mα,

(
1

1− t

)
Mβ , 0, 0, 0

)

− J
(0)
αβ

(
Mα

(
w

1− w
+

1

1− s

)
,

(
1

1− t

)
Mβ , 0, 0, 0

)]
(3.24)

The non-dimensionalized sink term can be expressed in terms of the coefficients {h(p)A , h
(p)
B }

to complete the system (3.21,3.22), by using the expression (3.20) in Eqs. (2.16) and
(2.17):

Γ̃ =
(
1− 〈e2〉AA

) n2A
n2

d2A
d2AB

M4
A

∞∑

p,q=0

∂̃sptq Ĝ
Γ
AA (s, t)h

(p)
A h

(q)
A

+4
(
1− 〈e2〉AB

) nAnB
n2

M
5

2

AM
5

2

B

∞∑

p,q=0

∂̃sptq Ĝ
Γ
AB (s, t)h

(p)
A h

(q)
B

+
(
1− 〈e2〉BB

) n2B
n2

d2B
d2AB

M4
B

∞∑

p,q=0

∂̃sptq Ĝ
Γ
BB (s, t)h

(p)
B h

(q)
B

(3.25)

where for any function ψ(e) of the coefficient of restitution, 〈ψ〉αβ ≡
∫
ραβ(e)ψ(e)de, and

the generating function ĜΓ
αβ (s, t) is given by:

ĜΓ
αβ (s, t) ≡

∫ ∫
e−Mαu2

1e−Mβu
2

2G 1

2

(
Mαu

2
1, s
)
G 1

2

(
Mβu

2
2, t
)
|u12|3 du1du2

=
((1− t)Mα + (1− s)Mβ)

3

2

M3
αM

3
β

(3.26)

The system of equations (3.21,3.22,3.25) for the coefficients {h(p)A , h
(p)
B , Γ̃} is to be

solved in conjunction with the requirements (3.4), (3.5) and (3.6) that imposes, using

(3.20): h
(0)
A = 1, h

(0)
B = 1, nA

n h
(1)
A + nB

n h
(1)
B = 0. Fig. (1) shows a comparison between

theoretical and (DSMC) simulations values for the coefficient h
(2)
α of a monodisperse

system obtained within a fifth order truncation of the polynomial expansion, for Laplace
distributed coefficients of restitution (c.f Section 4).

The equations corresponding to the gradient-induced corrections of the distribution
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Figure 1. Plot of the second Sonine polynomial expansion coefficient, h
(2)
α , for a monodisperse

system with Laplace distributed coefficients of restitution around mean value 〈e〉 = 0.9, as a
function of the width of the distribution σ. The theoretical results for a 5th order polynomial
expansion (filled circles) are plotted together with DSMC simulation results (empty circles), cf
section 4.

functions, Eqs. (3.8-3.12), are solved by proceeding as for the homogeneous inelastic

corrections φ
(0)
α to the Maxwellian distribution. The isotropic functions ΦK,X

α , X ∈
{T, c, n, V } are expressed as truncated series of Sonine polynomials:

ΦK,T
α =

Nt∑

p=0

k
T,(p)
α

nd2AB

S
p
3

2

(
γαu

2
)
=

Nt∑

p=0

k
T,(p)
α

nd2AB

∂̃tpG 3

2

(
t, γαu

2
)

(3.27)

ΦK,n
α =

Nt∑

p=0

k
n,(p)
α

nd2AB

S
p
3

2

(
γαu

2
)
=

Nt∑

p=0

k
n,(p)
α

nd2AB

∂̃tpG 3

2

(
t, γαu

2
)

(3.28)

ΦK,c
α =

Nt∑

p=0

k
c,(p)
α

nd2AB

S
p
3

2

(
γαu

2
)
=

Nt∑

p=0

k
c,(p)
α

nd2AB

∂̃tpG 3

2

(
t, γαu

2
)

(3.29)

ΦK,V
α =

Nt∑

p=0

k
V,(p)
α

nd2AB

S
p
5

2

(
γαu

2
)
=

Nt∑

p=0

k
V,(p)
α

nd2AB

∂̃tpG 5

2

(
t, γαu

2
)

(3.30)

which are substituted in Eqs. (3.8-3.12). The resulting set of equations is then projected
on

SN
3

2

(
γαu

2
)√

γαu = ∂̃wNG 3

2

(
w, γαu

2
)√

γαu,

for X ∈ {T, c, n}, and
SN

5

2

(
γαu

2
)
γ3/2α uu = ∂̃wNG 5

2

(
w, γαu

2
)
γ3/2α uu,

for X = V . One then obtains a linear system of equations for the coefficients k
X,(p)
α :

MKk = RK (3.31)

where k is the column vector defined by: k ≡
(
k
T,(0)
A , .., k

T,(N)
A , k

T,(0)
B , .., k

T,(N)
B , k

n,(0)
A , ..,

k
n,(N)
A , k

n,(0)
B , .., k

n,(N)
B , k

c,(0)
A , .., k

c,(N)
A , k

c,(0)
B , .., k

c,(N)
B , k

V,(0)
A , .., k

V,(N)
A , k

V,(0)
B , .., k

V,(N)
B

)t

,

the superscript t, standing here for “transpose”. The matrix elements, MK
ij and RK

j

defined in Eq. (3.31), and their generating functions, are given in Appendix B. In addition,
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the constraints (3.4), (3.5), (3.6), yield, for X ∈ {T, n, c}:
nA

n

√
mAk

X,(0)
A +

nB

n

√
mBk

X,(0)
B = 0

Using the forms (3.7), (3.27-3.30), in conjunction with the solution {kX,(q)
α }, where 0 6

q 6 Nt, of the system (3.31), in the definitions of the diffusion velocity, heat flux and stress
tensor, one obtains the constitutive relations. The resulting transport coefficients (like the

coefficients {kX,(q)
α }), are non-trivial functions of the mass and size ratios, concentration,

and of the characteristics of the distributions ραβ(e) for the coefficient of restitution. The
pressure p is given by:

p =
nT

3
, (3.32)

The shear viscosity is given by:

µ = −
√
6

24

√
Tm0

d2AB

(nA
n

√
MAk

V,(0)
A +

nB

n

√
MBk

V,(0)
B

)
(3.33)

The transport coefficients for the diffusion flux are given by:

κXA = k
X,(0)
A (3.34)

and the transport coefficients for the heat flux are:

λX =
nA

n
√
MA

(
k
X,(0)
A − k

X,(1)
A

)
+

nB

n
√
MB

(
k
X,(0)
B − k

X,(1)
B

)
(3.35)

Notice that while the transport coefficients are expressed only in terms of the first two
Sonine expansion coefficients, their values, as that of the expansion coefficients, actually
depend on the order of truncation of the whole series in Sonine polynomials.

4. Comparison with DSMC simulations

To check the reliability of the calculation of the transport coefficients presented above,
we numerically solved the Boltzmann equation by means of the DSMC method (Bird
(1976)), using the particle simulator Dynamo (Bannerman et al. (2011)). For binary
mixtures the velocity distribution is estimated by:

fα(v, t) =
1

Nα

Nα∑

i=1

δ(v − v(i)(t)) (4.1)

where Nα is the number of particles in species α, and the indices between comma indicate
a given particle label.

Considering first the influence of the stochastic behavior on the reduced velocity dis-
tribution function of a homogeneous monodisperse granular gas, we performed a DSMC
simulation of a system with N ≡ NA + NB = 5 × 105 particles, recorded the veloci-
ties of the particles after 105 collisions and evaluated the Sonine polynomial expansion
coefficients of the distribution function. The latter are related to the velocity moments

c2k ≡ 1

N

N∑

i=1

(v(i)v(i)

2T

)k
(4.2)
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through (Chapman & Cawling (1970)):

c2k =
(2k + 1)!!

2k

(
1 +

∑

p

(−1)p
k!

(k − p)!p!
h(p)α

)
(4.3)

Figure 1 shows theoretical predictions for h
(2)
α (corresponding to a fifth order truncation

of the polynomial series) together with DSMC results. Guided by recent experimental,
numerical and theoretical results (Montaine et al. (2011); Gunkelmann et al. (2014))
concerning the distribution of coefficients of restitution, we considered here the case of
Laplace distributed coefficients:

ραβ(e) =
1

2σαβ
e

−|e−〈e〉αβ|
σαβ (4.4)

The average value of the coefficient of restitution was taken to be 〈e〉 ≡ 〈e〉AA = 〈e〉AB =
〈e〉BB = 0.9, and we varied the width σ ≡ σAA = σAB = σBB of its probability density.
For the smaller standard deviations σ, DSMC and theory are in fairly good agreement,
while as σ increases, discrepancies between simulation and theoretical predictions become
larger, illustrating the need for high order truncation in the polynomial expansions.
We considered next the diffusion of impurities, described by the tracer limit (c → 0)

of the diffusion coefficient κcA. In this limit, the coefficient can be measured from the
mean-square displacement of the tracer particles in a the homogeneous cooling state:

κcA(t) =
nB

6δt

1

NB

NB∑

i=1

[∣∣r(i)(t+ δt)−r(i)(0)
∣∣2 −

∣∣r(i)(t)−r(i)(0)
∣∣2
]

(4.5)

where δt denotes a time interval, nB is the number density of the gas in excess, and
the above sum is carried out over B particles. The tracer limit (of species A) is realized
in simulations by ignoring A − A collisions, and by imposing that the tracer particles
have no influence on the dynamics of the surrounding gas, i.e in a A-B collision, only
the velocity of A (tracer) particle is modified. A small number of A particle is therefore
not required (Garzo & Montanero (2004)). In order to get rid of the time dependence of
the diffusion coefficient that occurs through its dependence on the (decreasing in time)
temperature, we consider a reduced diffusion coefficient κc∗A :

κc∗A (t) =
κcA(t)√
T (t)

(4.6)

The above rescaling allows to eliminate the time dependence of κc∗A , as can be seen in
Fig. (2). The latter shows the time behaviour of κc∗A obtained in a simulation of a mixture
of 13500 particles (half of which belonging to the impurity species A), having identical
sizes and mass ratio mA

mB
= 4, performing 105 collisions, with coefficients of restitution

distributed according to Laplace laws (4.4) with identical averages and variances 〈e〉 =
〈e〉AA = 〈e〉AB = 〈e〉BB , and σ = σAA = σAB = σBB . After a transient regime, the
value of the coefficient κc∗A reaches a constant value. A comparison of the corresponding
value of the diffusion coefficient, normalized by its elastic counterpart, with theoretical
predictions for 〈e〉 = 0.95 and various values of σ is shown in Fig. (3).

5. Stochasticity-induced segregation

As has been illustrated in the previous section, taking into account the stochastic
nature of the coefficient of restitution can have a quantitative influence on the values of
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Figure 3. Comparison between theoretical (empty circles) and DSMC results (filled circles) for
the normalized diffusion coefficient κA

c (〈e〉, σ)/κA
c (1, 0) computed in the tracer limit nA

n
→ 0, for

a mass ratio mA/mB = 4, and a restitution coefficient distributed according to a Laplace law
around 〈e〉 = 0.95. The values are plotted as a function of the width σ of the Laplace distribution
for the coefficients of restitution.

the transport coefficient. The importance of this effect depends of course on the actual
shape of the distribution, and in particular its width. This section is devoted to the
study of a qualitative signature of the stochasticity, namely the fact that the shape of
the distribution influences segregation in mixtures of otherwise identical particles. More
specifically, we study the temperature and gravity driven diffusion in a mixture of grains
with same mass, size and mean coefficient of restitution, but different standard deviations
for the (three) different types of restitution coefficient. Thermal segregation in granular
mixtures has been identified as one of the main factors of the Brazil Nut effect (Hsiau
& Hunt (1996); Schröter et al. (2006)) in the case of granular gases, and its dependence
on the particle properties has been studied in the past (Arnarson & Willits (1998);
Jenkins & Yoon (2002); Brey et al. (2005); Garzó (2008)). In particular, it was predicted
(Serero et al. (2006)) and observed in molecular dynamic simulations (Serero et al. (2009,
2011); Brito et al. (2008); Brito & Soto (2009)) that the species in a binary mixture
may segregate even when they differ only in their respective coefficients of restitution,
demonstrating a direct influence of inelasticity on the properties of binary granular gas
mixtures. Here we proceed to a similar analysis by considering particles of same mass,
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Figure 4. Plots of the thermal coefficients αAB and βAB , see Eqs. (5.4)-(5.5), as a function
of the concentration, c ≡ nA

n
, for a mixture of particles whose collisions are characterized by

coefficients of restitution distributed according to Laplace laws. The distributions have the same
average coefficients of restitution 〈e〉 =

√
0.8, and different standard deviations for the three type

of collisions: σAA = 0.2, σAB = 0.1, and σBB = 0.01. The particles are otherwise identical, i.e
mA = mB , dA = dB .

size and average coefficient of restitution, and Laplacian distributions for the three types
of coefficient of restitution, with different standard deviations. The momentum balance
equation describing the non-convecting (V = 0) steady state of a mixture reads, using
Eqs. (2.11) (after adding ρmg on the left hand side, to account for gravity), and (3.15):

∇p = −ρmg (5.1)

which can be rewritten, using the equation of state p = nT
3 :

∇ lnn = −∇ lnT − 3

T
((mA −mB)c+mB)g. (5.2)

Now substituting Eq. (5.2) in Eq. (3.13), and using the fact that the diffusive fluxes
vanish (JA = 0), one obtains the following relation between the temperature and concen-
tration gradients, when the temperature and concentration vary only along the vertical
(z) direction:

∂ ln c

∂ξ
= αAB

∂ lnT

∂ξ
+ βAB (5.3)

where ξ =
∫ z

0
(mA+mB)g

T (z′) dz′, is a rescaled length scale,

αAB ≡ κnA − κTA
κcA

(5.4)

describes the effects of the temperature gradient on the gradient of concentration, and

βAB = 3
κnA
κcA

((MA −MB)c+MB) (5.5)

accounts for the effects of gravity. In particular, the sign of αAB determines the direction
of segregation: when αAB > 0 the A particles tends to concentrate in the hotter regions.
Similarly, when βAB > 0 the particles A tends to concentrate near the top of the system.
As mentioned, in order to emphasize the effect of the random nature of the coefficient
of restitution on the segregation properties of the system, we consider here the case
mA = mB , dA = dB , and 〈e〉AA = 〈e〉AB = 〈e〉BB =

√
0.8, i.e. we study a mixture of

particles differing only by the shape of the distribution of the coefficient of restitution
characterizing the collisions they are subjected to. More specifically, we considered a set
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of Laplacian distributions, with three different widths σAA = 0.2, σAB = 0.1 and σBB =
0.01. The corresponding values for the coefficients αAB and βAB are plotted in Fig. (4)
as functions of the concentration, c, of A particles. The sign of αAB indicates that the
particles with the broader distribution tend to concentrate in the hotter regions. The sign
of βAB (Fig. 4, Right) indicates that gravity drives the particles with broader distribution
upward. If those results are associated with the fact that in a vertically vibrated system
of such mixtures, a minimum in the temperature profile is expected (Brey et al. (2001);
Brey & Ruiz-Montero (2004)), as a consequence of the density gradient correction to the
Fourier law, one may expect a pattern formation in the form of a three layers arrangement
in vertically vibrated systems, with the particles colliding with the narrower distribution
concentrating in the area situated below the minimum of temperature, as a result of the
competition between the effect of the temperature gradient and gravity. For other sets of
of values of the widths of the distributions, or other types of distributions, one may find
that the signs of the coefficients αAB and βAB depend on the concentration, yielding
more complex interplay between the effect of gravity and temperature gradients, and
resulting in different profiles of concentration.

6. Concluding remarks

A complete hydrodynamic description of a dilute binary mixture of granular gas inter-
acting by collisions characterized by stochastic coefficients of restitution has been derived.
A technique for obtaining accurate transport coefficients, limited only by computer ca-
pacity, has been presented as well. The method has been illustrated by considering the
case of Laplacian distributions, which can be used to model energy transfer to integral
degrees of freedom due to surface asperities, as has been recently shown in experiments
and simulations. The results were compared to DSMC simulations with good agreement.
The stochasticity has been shown to yield quantitative differences with respect to the
non fluctuating case. Of course the discrepancies depend strongly on the actual shape of
the employed distribution function: Typically, wider distributions yield stronger discrep-
ancies. The hydrodynamic description has been employed to study the segregation in a
mixture subjected to a temperature gradient under gravity. In particular, by consider-
ing a mixtures of two species having the same mass and size, and interacting with the
same coefficient of restitution on average, it was shown that fluctuation of the coefficient
of restitution alone was sufficient to yield partial segregation. Particles whose collisions
are characterized by wider distributions for the coefficient of restitution were found to
tend to be driven toward the hotter regions, while gravity was found to drive those par-
ticles upward. While we considered as an illustration a particular type of distribution,
the hydrodynamic description presented here, together with the described method for
obtaining the transport coefficients could be applied to the effective description of the
relevant degrees of freedom of other dissipative collisional systems, provided a probabil-
ity distribution for the exchange of energy with the remaining degrees of freedom can
be devised. Those possibly comprise, e.g., complex shaped particles or some classes of
active particles.
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Appendix A. Equations for φKα

Calculating the transport coefficients to Navier-Stokes order requires to carry out the
Chapman-Enskog expansion to first order in gradients of the hydrodynamic fields. The
corresponding two coupled Boltzmann equations for the corrections, φKα , read:

DKfA =
(
L
(1)
AA + L

(2)
AA + L

(1)
AB

)
φKA + L

(2)
ABφ

K
B (A 1)

DKfB = L
(2)
BAφ

K
A +

(
L
(1)
BB + L

(2)
BB + L

(1)
BA

)
φKB (A 2)

where

L
(1)
αβφ

K
α ≡

∫
Bαβ

(
fMα φKα , f

(HCS)
β , ραβ (e) , e

)
de

L
(2)
αβφ

K
β ≡

∫
Bαβ

(
f (HCS)
α , fMβ φKβ , ραβ (e) , e

)
de

are linearized Boltzmann operators, and DKfα denotes the first order term in the ex-
pansion of Dfα, where recall that D ≡ ∂

∂t + v · ∇. Following the CE approach:

Dfα = fMα

[
φαD lnnα + 2γαui (φα − φ′α)DVi +

(
γαu

2 (φα − φ′α)−
3

2
φα

)
D lnT

+ c
∂φα

∂c
D ln c

]
+ fMα DΦK

α +ΦK
α f

M
α

[
D lnnα + 2γαuiDVi +

(
γαu

2 − 3

2

)
D lnT

]

Straightforward tensorial considerations can be used to determine the general form of
the functions, φKα :

φKα = ΦK,T
α

(
γαu

2
)√

γαu · ∇ lnT +ΦK,n
α

(
γαu

2
)√

γαu · ∇ lnn

+ΦK,c
α

(
γαu

2
)√

γαu · ∇ ln c+ΦK,V
α

(
γαu

2
)
γ

3

2

αuu:∇V +Φ0
αdivV

where the functions ΦK,T
α ,ΦK,c

α , ΦK,n
α ,ΦK,V

α and Φ0
α are isotropic functions of the rescaled

peculiar velocity γαu
2. It turns out that the Φ0

α vanishes. DKfA is given, using Eqs. (2.9),
(2.11) and (2.13), by:

DKfA =
Γ

nT
fMA

[(
γAu

2
(
ΦK,c

A

)′
−
(
γAu

2 − 2
)
ΦK,c

A − c
∂ ln Γ̃

∂c
ΦK,T

A

)
√
γAuj

∂ ln c

∂xj

+

(
γAu

2
(
ΦK,n

A

)′
−
(
γAu

2 − 2
)
ΦK,n

A − ΦK,T
A

)√
γAuj

∂ lnn

∂xj

+

(
γAu

2
(
ΦK,T

A

)′
−
(
γAu

2 − 2
)
ΦK,T

A − 1

2
ΦK,T

A

)√
γAuj

∂ lnT

∂xj

+

(
γAu

2
(
ΦK,V

A

)′
−
(
γAu

2 − 3
)
ΦK,V

A

)
γ

3

2

Auiuj
∂Vi

∂xj

]

+fMA

[
2γA (φA − φ′A)uiuj

∂Vi

∂xj
+

(
φA − nmA

ρ
(φA − φ′A)

)
ui
∂ lnn

∂xi

+

((
γAu

2 − nmA

ρ

)
(φA − φ′A)−

3

2
φA

)
ui
∂ lnT

∂xi

+

(
φA + c

∂φA

∂c

)
uj
∂ ln c

∂xj

]
(A 3)
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A similar expression for DKfB can be obtained by inverting labels A and B (and changing
c for (1− c)) in the above equation. Combining Eq. (A 3) and its B species counterpart
with Eqs. (A 1)-(A 2) yields Eqs. (3.8)-(3.12).

Appendix B. Matrix elements

This appendix provides the matrix elements needed to solve the linear system Eq. (3.31),
corresponding to a truncation of the Sonine polynomial expansion at order N. The matrix
elements MK

i,j for 1 6 i 6 6N + 6, 1 6 j 6 6N + 6 are calculated by substituting the
expressions (3.27-3.29) into the left hand side of equations (3.9-3.11), multiplying by the
functions

Si
3

2

(
γαu

2
)√

γαu = ∂̃wiG 3

2

(
w, γαu

2
)√

γαu,

and integrating over the velocities. The matrix elements MK
i,j for 6N + 7 6 i 6 8N +

8, 6N + 7 6 j 6 8N + 8 are calculated by substituting the expressions (3.30) into

the left hand side of equation (3.8), multiplying by the functions Si
5

2

(
γαu

2
)
γ
3/2
α uu =

∂̃wiG 5

2

(
w, γαu

2
)
γ
3/2
α uu and integrating over the velocities. The results are expressed

below in terms of derivatives of the generating functions L̂
(i,j)
αβ (w, s, r) given in Eqs. (B 4-

B 7), and the generating functions ĤV (w, t), Ĥ(w, t), and Ẑ(w, t) given in Eqs. (B 1-B 3).
For 1 6 i 6 N + 1, 1 6 j 6 N + 1, the non zero elements of the (8N + 8) × (8N + 8)
matrix MK are:

MK
i,j =

(
nA

n

d2A
d2AB

M4
A

∑

p

h
(p)
A ∂̃wi,sp,rj

(
L̂
(1,1)
AA (w, s, r) + L̂

(1,2)
AA (w, s, r)

)

+
nB

n
M

5

2

AM
3

2

B

∑

p

h
(p)
B ∂̃wi,sp,rj L̂

(1,1)
AB (w, s, r)

− π
7

2

3
Γ̃

(
∂̃witj Ĥ(w, t) +

3

2
∂̃witj Ẑ(w, t)

))

MK
i,j+(N+1) =

nB

n
M2

AM
2
B

∑

p

h
(p)
A ∂̃wi,sp,rj L̂

(1,2)
AB (w, s, r)

MK
i+(N+1),j =

nA

n
M2

BM
2
A

∑

p

h
(p)
B ∂̃wi,sp,rj L̂

(1,2)
BA (w, s, r)

MK
i+(N+1),j+(N+1) =

nB

n

d2B
d2AB

M4
B

∑

p

h
(p)
B ∂̃wi,sp,rj

(
L̂
(1,1)
BB (w, s, r) + L̂

(1,2)
BB (w, s, r)

)

+
nA

n
M

5

2

BM
3

2

A

∑

p

h
(p)
A ∂̃wi,sp,rj L̂

(1,1)
BA (w, s, r)

− π
7

2

3
Γ̃

(
∂̃witj Ĥ(w, t) +

3

2
∂̃wi,tj Ẑ(w, t)

)

MK
i+(2N+2),j =

π
7

2

3
Γ̃
∑

q

∂̃wi,tj Ẑ(w, t)
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MK
i+(2N+2),j+(2N+2) =

(
nA

n

d2A
d2AB

M4
A

∑

p

h
(p)
A ∂̃wi,sp,rj

(
L̂
(1,1)
AA (w, s, r) + L̂

(1,2)
AA (w, s, r)

)

+
nB

n
M

5

2

AM
3

2

B

∑

p

h
(p)
B ∂̃wi,sp,rj L̂

(1,1)
AB (w, s, r)

−π
7

2

3
Γ̃
(
∂̃wi,tj Ĥ(w, t) + 2∂̃witj Ẑ(w, t)

))

MK
i+(2N+2),j+(3N+3) =

nB

n
M2

AM
2
B

∑

p

h
(p)
A ∂̃wi,sp,rjL

(1,2)
AB (w, s, r)

MK
i+(3N+3),j+(N+1) =

π
7

2

3
Γ̃
∑

q

∂̃witj Ẑ(w, t)

MK
i+(3N+3),j+(2N+2) =

nA

n
M2

BM
2
A

∑

p

h
(p)
B ∂̃wi,sp,rj L̂

(1,2)
BA (w, s, r)

MK
i+(3N+3),j+(3N+3) =

nB

n

d2B
d2AB

M4
B

∑

p

h
(p)
B ∂̃wi,sp,rj

(
L̂
(1,1)
BB (w, s, r) + L̂

(1,2)
BB (w, s, r)

)

+
nA

n
M

5

2

BM
3

2

A

∑

p

h
(p)
A ∂̃wi,sp,rj L̂

(1,1)
BA

− π
7

2

3
Γ̃
(
∂̃wi,tj Ĥ(w, t) + 2∂̃wi,tj Ẑ(w, t)

)

MK
i+(4N+4),j =

π
7

2

3
Γ̃c
∂ ln Γ̃

∂c

∑

q

∂̃wi,tj Ẑ(w, t)

MK
i+(4N+4),j+(4N+4) =

nA

n

d2A
d2AB

M4
A

∑

p

h
(p)
A ∂̃wi,sp,rj

(
L̂
(1,1)
AA (w, s, r) + L̂

(1,2)
AA (w, s, r)

)

+
nB

n
M

5

2

AM
3

2

B

∑

p

h
(p)
B ∂̃wN ,sp,rq L̂

(1,1)
AB (w, s, r)

−π
7

2

3
Γ̃
(
∂̃wi,tj Ĥ(w, t) + 2∂̃wi,tj Ẑ(w, t)

)

MK
i+(4N+4),j+(5N+5) =

nB

n
M2

AM
2
B

∑

p

h
(p)
A ∂̃wi,sp,rj L̂

(1,2)
AB (w, s, r)

MK
i+(5N+5),j+(N+1) =

π
7

2

3
Γ̃c
∂ ln Γ̃

∂c

∑

q

∂̃wi,tj Ẑ(w, t)

MK
i+(5N+5),j+(4N+4) =

nA

n
M2

BM
2
A

∑

p

h
(p)
B ∂̃wi,sp,rj L̂

(1,2)
BA (w, s, r)
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MK
i+(5N+5),j+(5N+5) =

nB

n

d2B
d2AB

M4
B

∑

p

h
(p)
B ∂̃wi,sp,rj

(
L̂
(1,1)
BB (w, s, r) + L̂

(1,2)
BB (w, s, r)

)

+
nA

n
M

5

2

BM
3

2

A

∑

p

h
(p)
A ∂̃wN ,sp,rq L̂

(1,1)
BA (w, s, r)

− π
7

2

3
Γ̃
(
∂̃wi,tj Ĥ(w, t) + 2∂̃wi,tj Ẑ(w, t)

)

MK
i+(6N+6),j+(6N+6) =

nA

n

d2A
d2AB

M5
A

∑

p

h
(p)
A ∂̃wi,sp,rj

(
L̂
(2,1)
AA (w, s, r) + L̂

(2,2)
AA (w, s, r)

)

+
nB

n
M

7

2

AM
3

2

B

∑

p

h
(p)
B ∂̃wi,sp,rj L̂

(2,1)
AB (w, s, r)− 5π

7

2

6
Γ̃∂̃wi,tj Ĥ

V (w, t)

MK
i+(6N+6),j+(7N+7) =

nB

n
M2

AM
3
B

∑

p

h
(p)
A ∂̃wi,sp,rj L̂

(2,2)
AB (w, s, r)

MK
i+(7N+7),j+(6N+6) =

nA

n
M2

BM
3
A

∑

p

h
(p)
B ∂̃wi,sp,rj L̂

(2,2)
BA (w, s, r)

MK
i+(7N+7),j+(7N+7) =

nB

n

d2B
d2AB

M5
B

∑

p

h
(p)
B ∂̃wN ,sp,rq

(
L̂
(2,1)
BB (w, s, r) + L̂

(2,2)
BB (w, s, r)

)

+
nA

n
M

7

2

BM
3

2

A

∑

p

h
(p)
A ∂̃wN ,sp,rq L̂

(2,2)
BA (w, s, r)− 5π

7

2

6
Γ̃∂̃wi,tj Ĥ

V (w, t),

where the generating functions ĤV , Ĥ, and Ẑ are given by:

ĤV (w; t) =

(
− 7

2
(1−w)

(1−wt+) + 3
)

(1− wt)
7

2

(B 1)

Ĥ (w; t) = −15

4

(1− w) t

(1− wt)
7

2

(B 2)

Ẑ (w; t) =
3

2

1

(1− wt)
5

2

, (B 3)

and the generating functions L̂
(i,j)
αβ (w; s, r) can be computed by taking derivatives of the

”super-generating” functions J
(0)
αβ and J

(1)
αβ (c.f Eq. (C 3) in Appendix C):

L̂
(1,1)
αβ (w; s, r) =

1

(1− w)
5

2 (1− r)
5

2 (1− s)
3

2

×
[
δxJ

(1)
αβ

(
w

1− w
Mα, 0,Mα +

r

1− r
Mα,Mβ +

s

1− s
Mβ , 0, 0, 0

)

− δaJ
(0)
αβ

(
w

1− w
Mα +Mα +

r

1− r
Mα,Mβ +

s

1− s
Mβ , 0, 0, 0, 0, 0

)]
(B 4)
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L̂
(1,2)
αβ (w; s, r) =

1

(1− w)
5

2 (1− r)
5

2 (1− s)
3

2

×
[
δyJ

(1)
αβ

(
w

1− w
Mα, 0,Mα +

s

1− s
Mα,Mβ +

r

1− r
Mβ , 0, 0, 0

)

− δzJ
(0)
αβ

(
w

1− w
Mα +Mα +

s

1− s
Mα,Mβ +

r

1− r
Mβ , 0, 0, 0, 0, 0

)]
(B 5)

L̂
(2,1)
αβ (w; s, r) =

1

(1− w)
5

2 (1− r)
5

2 (1− s)
3

2

×
[(

δ2x− 1

3
δaδc

)
J
(1)
αβ

(
w

1− w
Mα, 0,Mα +

r

1− r
Mα,Mβ +

s

1− s
Mβ , 0, 0, 0

)

− 2

3
δ2aJ

(0)
αβ

(
w

1− w
Mα +Mα +

r

1− r
Mα,Mβ +

s

1− s
Mβ , 0, 0, 0, 0, 0

)]
(B 6)

L̂
(2,2)
αβ (w; s, r) =

1

(1− w)
5

2 (1− r)
5

2 (1− s)
3

2

×
[(

δ2y − 1

3
δaδd

)
J
(1)
αβ

(
w

1− w
Mα, 0,Mα +

s

1− s
Mα,Mβ +

r

1− r
Mβ , 0, 0, 0

)

− 2

3

(
δ2z − 1

3
δaδb

)
J
(0)
αβ

(
w

1− w
Mα +Mα +

s

1− s
Mα,Mα +

r

1− r
Mβ , 0, 0, 0, 0, 0

)]

(B 7)

where δa ≡ − ∂
∂a ; δb ≡ − ∂

∂b ; δc ≡ − ∂
∂c ; δd ≡ − ∂

∂d ; δx ≡ − ∂
∂x + 1

2δa + 1
2δc; δy ≡

− ∂
∂y + 1

2δa + 1
2δd; δz ≡ − ∂

∂z + 1
2δa + 1

2δb, and it is understood that the derivatives
operators δ are applied before the substitution of the respective arguments. The vec-
tor elements, RK

i , for 1 6 i 6 6N + 6 are calculated by substituting the expressions
(3.27-3.29) into the right hand side of equation (3.9-3.11), multiplying by the functions
Si

3

2

(
γαu

2
)√

γαu = ∂̃wiG 3

2

(
w, γαu

2
)√

γαu, and integrating over the velocities. The vec-

tor elements RK
i for 6N + 7 6 i 6 8N + 8 are calculated by substituting the expres-

sions (3.30) into the right hand side of equation (3.8), multiplying by the functions

Si
5

2

(
γαu

2
)
γ
3/2
α uu = ∂̃wiG 5

2

(
w, γαu

2
)
γ
3/2
α uu and integrating over the velocities. The
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results, for 1 6 i 6 N + 1, are:

RK
i =

π3

√
MA

nA√
γA

∑

p

h
p
A∂̃wi,spR̂

T
A (w; s)

RK
i+(N+1) =

π3

√
MB

nB√
γB

∑

p

h
p
B ∂̃wNi,spR̂

T
B (w; s)

RK
i+(2N+2) =

π3

√
MA

nA√
γA

∑

p

h
p
A∂̃wi,spR̂

n
A (w; s)

RK
i+(3N+3) =

π3

√
MB

nB√
γB

∑

p

h
p
B ∂̃wi,spR̂

n
B (w; s)

RK
i+(4N+4) =

π3

√
MA

∑

p

(
h
p
A + c

∂h
(p)
A

∂c

)
∂̃wi,spR̂

c
A (w; s)

RK
i+(5N+5) =

π3

√
MB

∑

p

(
− c

1− c
h
p
B + c

∂h
p
B

∂c

)
∂̃wi,spR̂

c
B (w; s)

RK
i+(6N+6) =

5π3

√
MA

∑

p

h
p
A∂̃wi,spR̂

V
A(w, s)

RK
i+(7N+7) =

5π3

√
MB

∑

p

h
(p)
B ∂̃wi,spR̂

V
B(w, s)

where the generating functions R̂V
α , R̂

T
α , R̂

n
α, and R̂

c
α are given by:

R̂c
α (w; s) =

3

2

(1− s)

(1− ws)
5

2

(B 8)

R̂n
α (w; s) =

(
1− nm0

ρ
Mα

1

1− s

)
R̂c

α (w; s) (B 9)

R̂T
α (w; s) = −5

2


1−

(
1

1−s

)

(
w

1−w + s
1−s + 1

)


 R̂c

α (w; s) + R̂n
α (w; s) (B 10)

R̂V
α (w; s) =

(1− s)

(1− ws)
7

2

(B 11)

Appendix C. The super generating function

Most of the generating functions necessary to derive the constitutive relations can be

expressed in terms of derivatives of “super-generating” functions, J
(k)
αβ defined by:

J
(k)
αβ (a, b, c, d, x, y, z) ≡

∫
ραβ(e)

e2k

∫

u12 ·k>0

du1du2dk̂ (k · u12) e
−F de (C 1)

where k̂ is a unit vector,

F ≡ au21 + bu22 + cu′21 + du′22 +
x

2
(u1 + u′

1)
2
+
y

2
(u1+u′

2)
2
+
z

2
(u1+u2)

2
, (C 2)
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primed vectors denote precollisional velocities, unprimed vectors denotes postcollisional
velocities, and the collision law relating the two is given in Eq. (2.1). The indices α abd
β denote the species’ identities as explained in the text following Eq. (2.1). Calculation
yields:

J
(k)
αβ =

2π
7

2

λ
3

2

∫
ραβ(e)

e2k
1

µαβ (ναβ + µαβ)
de (C 3)

where λ = a+ b+ c+ d+ 2x+ 2y + 2z and:

µαβ = Rαβ −
K2

αβ

λ

ναβ = S2
αβ − (1 + e)

λe

(
(d+y)Mαβ − (c+ x)Mβα

)

×
(
2Kαβ +

1 + e

e

(
(d+y)Mαβ − (c+ x)Mβα

))

with

Rαβ = (a+ c+ 2x)
(
Mβα

)2
+ (b+ d)

(
Mαβ

)2

+
1

2

(
Mαβ −Mβα

)2
(y + z)

Sαβ =
1 + e

2e

[(
1 + e

e
− 2

)(
(2c+ x)

(
Mβα

)2

+
(
Mαβ

)2
(2d+ y)

)
+ 2MαβMβαy − 2

(
Mβα

)2
x

]

Kαβ =
(
Mβα (a+ c+ 2x+ y + z)−Mαβ (b+ d+ y + z)

)
.
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