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Abstract We study the mechanism leading to the formation
of stripe-like patterns in a rectangular container filled with
a sub-monolayer of frictional spherical particles when it is
subjected to horizontal oscillations. By means of Molecular
Dynamics simulations we could reproduce the experimental
results. Systematic simulations allow to identify friction to
be responsible for the pattern formation, that is, the tangen-
tial interaction between contacting particles and between the
particles and the floor of the container. When particles are
in contact with the floor and other adjacent particles simul-
taneously, there emerges a frustrated situation in which the
particles are prevented from rolling on the floor. This effect
leads to local jamming and eventually to stripe-like pattern
formation. In the long time evolution, the stripes are unstable.
Stripes may merge as well as disintegrate.

Keywords Pattern formation · Horizontal shaking ·
Frustration effects

1 Introduction

In many situations, granular systems subjected to external
agitation have a tendency to segregate, rather than to mix.
This phenomenon is of enormous importance in industrial
applications, see [1–3] for review. When mixtures of parti-
cles differing in size, shape or material properties are agi-
tated, a variety of pattern formation phenomena is observed,
e.g. [4–6]. The effect discussed in this paper belongs to the
class of stratification phenomena, that is, as the result of a
dynamical process, the particles arrange themselves in form

D. Krengel · S. Strobl · A. Sack · M. Heckel · T. Pöschel (B)
Institute for Multiscale Simulation, Universität Erlangen-Nürnberg,
Nägelsbachstraße 49b, 91052 Erlangen, Germany
e-mail: thorsten.poeschel@eam.uni-erlangen.de

of stripes. Stratification in granular systems is a rather gen-
eral process and can be found in various systems. The most
prominent example is stratification occurring when a mixture
of small and large particles (or particles differing in shape)
are poured from a point source to form a heap and there exists
extensive literature on this effect, e.g. [7–23], which is caused
by different angles of repose depending on the particle types
[24,25]. In geological three-dimensional systems these strat-
ification patterns may adopt rather complex structures [7,8].
Frequently, stratification patterns can be found in geological
systems, e.g., regular stripes of stones are found on many non
vegetated alpine and polar hill slopes [26]. Albeit a variety
of mechanisms have been proposed [27], their spontaneous
formation is still unclear.

Structure formation is also observed in vertically or hor-
izontally periodically driven shallow granular systems. In
the case of vertically vibrated granular matter the energy is
injected into the system through collision with the bottom
plate. In a certain range of driving parameters, separation
into solid-like and fluid-like regions is observed where the
phases differ significantly in density, local order and granu-
lar temperature [28–30]. Here clustering takes place due to
the increase of the dissipation rate with the increase of the
density of the granular gas [31].

For vertical excitation, particles are immobile for small
values of the driving force. When the driving force exceeds
a critical value, isolated particles begin to move. This may
happen just below the amplitude of the acceleration reaches
gravity [32]. If the driving force exceeds a second threshold,
the granular medium forms a granular gas. Between these
threshold values the gas phase is unstable and a fraction of
particles can form immobile or slowly moving clusters, pos-
sibly undergoing coarsening dynamics of Ostwald-ripening
type: small clusters disappear and large clusters grow with
time [31]. For the case of sub-monolayers, besides structure
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formation, deviations from the Gaussian velocity distribu-
tion function were observed in experiments and simulations
[30,33,34]. These deviations are most pronounced at low
forcing and vanish as forcing is increased.

When binary mixtures of shallow systems of granular par-
ticles are agitated in vertical direction, where the types of
particles differ in density or size, segregation is observed
[5,6,35,36]. The segregation was attributed to a lack of
equipartition of energy between the species, resulting in a
larger pressure of the light (or small) particles than of the
heavy (large) ones leading to cluster formation of the lat-
ter species [36]. As a further effect, in the cluster state it
was observed that the heavy particles are characterized by
large fluctuations of the horizontal kinetic energy [37]. The
phenomena of structure formation in shallow sinusoidally
vertically vibrated containers appear to be rather indepen-
dent of the specifics of driving. Very similar phenomena were
found for mechanical driving, e.g. [28,29,34] and for driving
through an electrostatic field [31,38]. Only for the case of
multiplicative driving of the velocity, a qualitatively differ-
ent behavior was reported [35], found in MD simulations.

Segregation of particles is also observed when a binary
mixture of particles of different sizes, density or surface prop-
erties in a shallow container is subjected to horizontal vibra-
tion [39,40]. Here the phases organize themselves in stripe
oriented perpendicular to the direction of shaking. Several
different phases can be found in such systems [41,42], depen-
dent on the parameters of driving, the filling height and the
particle characteristics. The transitions between the phases
can be characterized by a continuous phase transition, includ-
ing critical slowing down [43]. The pattern coarsens with
time and shows similarity to simple models of the geological
process of stone striping [26]. The process of stripe forma-
tion in horizontally vibrated shallow bidisperse systems can
be phenomenologically described by a monodisperse system
of particles interacting via an effective attractive short-range
anisotropic interaction [44,45].

In view of the large body of literature regarding coarsening
and segregation in vertically vibrated (sub-) monolayers and
shallow systems discussed briefly above, surprisingly little is
known about coarsening and phase segregation in such sys-
tems when subjected to horizontal vibrations. According to
our knowledge, horizontally vibrated sub-monolayers were
only addressed by Strassburger et al. [46] and Betat et al. [47].
Related phenomena of phase separation and segregation are
observed for swirling excitation (e.g. circular vibration) of
a horizontal sub-monolayer of granular material [48–51] as
well as in horizontal containers when one of the side walls
vibrates [52].

By now, the reasons for segregation and phase separation
phenomena in granular systems are not fully understood and
there is no general theory which would allow to reliably pre-
dict whether a given granular system under certain external

conditions will mix or de-mix. An exception is the force-
free granular gas, that is, a dilute system in the absence of
external driving where we have some understanding on the
mechanism of structure formation, e.g. [53–56].

Besides being of interest by their own, fluidized granu-
lar media in shallow agitated containers have been studied
extensively since these quasi-two dimensional systems can
be easily analysed regarding the collective behavior and the
motion of individual grains. Understanding the physics of
these systems on the microscopic scale and on the collective
scale could lead to a more general theoretical understanding
of the collective dynamics of granular media.

The aim of the present paper is to explain pattern formation
in horizontally vibrated sub-monolayers of identical, almost
spherical particles as a consequence of frustration effects due
to friction of the particles.

2 Experiment

2.1 Setup

We investigated structure formation of a sub-monolayer of
about 4,800 approximately spherical mustard seeds of radius
r = (0.11±0.01) cm. The particles are confined in an unpol-
ished aluminum box of length 50 cm and width 10 cm. The
box was mounted longitudinal on a linear bearing and driven
by a motor to subject it to horizontal vibrations. The ampli-
tude and frequency of these sinusoidal oscillations could be
adjusted via software. A digital camera was used to observe
the system from above using phase-locked imaging via a
trigger signal from the motor. As in similar experiments per-
formed by Strassburger et al. [46] and by Betat et al. [47]
we observed the rapid formation of a stripe pattern oriented
perpendicular to the direction of driving.

Before starting the measurement, the material was liq-
uidized by intense driving (frequency f = 5 Hz, amplitude
A = 2 cm) to provide a homogeneous particle distribution
as initial condition. At time t = 0 we lowered the frequency
to f = 3 Hz (ω = 18.9 s−1) and started the recording.

2.2 Results

Within the first few seconds we observed structure formation
in the system, see Fig. 1. The initially homogeneous system
exhibits pronounced stripes of granular material perpendicu-
lar to the direction of the shaking. The first sign of the struc-
tures appears in the central area of the container after about 1
second. Subsequently, more clusters appear and spread over
the entire area with approximately uniform spacing between
the stripes. After about 10 seconds, the system reaches a quasi
stationary state with only slow changes over time. This is in
good agreement with the findings of Refs. [46,47].
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Fig. 1 Sequence of snapshots of the sub-monolayer at ω = 18.9 s−1

and A = 2 cm. The pictures are taken at equal phases of the oscillation
of the container. First signs of patterns appear at t ≈ 1 s. At t = 10 s
the stripe-like structure has fully developed and only minor changes are
visible later on. The corresponding simulation is highlighted in Fig. 4

Fig. 2 Isolated particles moving gas-like between the stripes may be
captured by the stripe (left). When reverting the direction of the oscilla-
tory motion, particles belonging to the bulk of the stripes may sublimate
and enter the gas phase (right)

When the structure has fully developed, the positions of
the stripes relative to the bottom of the container remain
mostly invariant. Isolated particles can move between the
stripes during the period of the oscillation and behave simi-
lar to particles in a granular gas, sloshing back and forth in
phase with the oscillation of the container. When the direc-
tion of the horizontal oscillation changes, that is, twice per
period, particles close to the sides of the stripes facing the
incoming wall can leave the stripes to join the free particles
in-between, while isolated particles colliding with the stripes
can be captured and join the bulk of the stripes (Fig. 2). This
may cause variations of the positions and sizes of the stripes.

Following the arguments of Refs. [52,57–60] this may
be considered as the result of a frustration effect [61]: Free

particles may roll on the horizontal surface of the bottom of
the container feeling only the relatively small force of rolling
friction. Particles inside the stripes are in contact with the
bottom of the container, and additionally with other particles,
such that their rolling motion is suppressed due to hindrance
by the much larger static friction.

At no point any “jumping” motion of particles was
observed, contradicting the main assumption of the modeling
of the effect in Ref. [47].

3 Simulation

In Ref. [47] the stripe formation was explained by means of
a Cellular Automaton model. The main assumption of this
model was that during the periodic motion of the container,
the particles are lifted and perform a ballistic flight, thus,
jump from their current stripe to an adjacent one.

As we do not observe any jumping particles in the exper-
iment, this kind of motion may be excluded as the origin
of pattern formation. In order to obtain an alternative expla-
nation, we performed Molecular Dynamics simulations of
the system. We take into account both normal and tangential
forces to model the particle-particle and particle-wall inter-
action.

3.1 Forces

For two spherical particles i and j centered at ri and r j , the
normal vector is defined as the unit vector r̂ = (ri −r j )/|ri −
r j |. The interaction forces for particles in contact are split into
a normal component along r̂ and the tangential component.
For the normal part, a viscoelastic Hertz interaction force Fn

is assumed [62],

Fn = 2 Y
√

Reff

3
(
1 − ν2

)
(

ξ3/2 + 3
2

A
√

ξ
dξ

dt

)
, (1)

where Reff = Ri R j
Ri +R j

is the effective radius of the colliding

particles and ξ(t) = Ri + R j −
∣∣ri (t) − r j (t)

∣∣ characterizes
the deformation of the particles. Y , ν and A are the Young’s
modulus, the Poisson’s ratio and the viscoelastic dissipative
constant, respectively.

For the tangential component we use the model by Haff
and Werner [63]

Ft = −sgn(vt
rel) min (γ t ∣∣vt

rel

∣∣ , µ
∣∣Fn∣∣), (2)

where γ t is the tangential damping constant, µ the coefficient
of the Coulomb friction andvt

rel the relative surface velocity at
the point of contact. In addition to a force acting on the center
of mass of each particle, the tangential force also generates
a torque. The forces between a particle i and a wall of the
container are calculated according to the same force laws
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Table 1 Material parameters used in the Molecular Dynamics
simulation

Material density ρ 2.5 × 103 kg/m3

Young’s modulus Y 106 Pa

Poisson’s ratio ν 0.3

Dissipative constant A 8.5 × 10−6 s

Coulomb friction coefficient µ 0.7

Tangential dissipative constant γ t 7 × 10−3 Ns/m

by having R j tend towards infinity. As the motion of the
particles relative to the floor can be a combination of sliding
and rolling, in addition to the sliding friction modelled by
Ft , a torque based on the rolling motion of the particles is
introduced:

M = −A |
(
r̂ · Ri

)
× ω| Fn ω

|ω| , (3)

where A denotes the viscoelastic dissipative constant and ω

the angular velocity of the particle [64,65].
The numerical parameters used in the simulation, corre-

sponding to the rather soft mustard seeds, are summarized in
Table 1.

3.2 Simulation setup

The rectangular container of length 40 cm, width 2 cm and
arbitrary height is shaken longitudinal along which peri-
odic boundary conditions are used. The bottom and side
walls of the container are solid walls. The radii of the 4,000
particles in the system are sampled from a uniform distrib-
ution in the interval [0.025, 0.05]cm and their initial posi-
tions are homogeneously distributed on the bottom of the
container. Initially, the particles are assigned uniformly dis-
tributed random velocity components in the plane from the
interval [−0.5, 0.5] cm/s. The initial vertical velocity was
zero. For homogenization we let the system equilibrate for
10 s. Afterwards all velocities (linear and angular) and accel-
erations are reset to zero. The resulting positions are used as
initial conditions for the actual simulation. If not mentioned
otherwise, the frequency of the shaking is set to an angular
frequency ω = 20 s−1 (i.e. f ≈ 3.2 Hz) and the amplitude
to A = 2.5 cm for all simulation runs.

3.3 Long-term evolution

We simulate the system for a total of 2,500 s to validate the
stability of the simulation and to ensure the system reached
a steady state after a few seconds with no further transient
behaviour. From the particle trajectories obtained as a result
of the MD simulation, we compute the density profile of the
particles in the direction of shaking, see Fig. 3.

Fig. 3 Evolution of the stripe-like pattern of the density field. The
vertical axis shows time. The left side of the figure shows the evolution
for the interval [0, 1,000] s, the right side shows the interval [1,400,
2,400] s. The color code ranges from blue (no particles) to red (close
packing), for the scale see Fig. 5 (color figure online)
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As in the experiment, stripes form rather rapidly after a few
seconds. We also observe spontaneous appearing and disap-
pearing of high density regions as well as merging and split-
ting of such regions. As a characteristic feature, we observe
that there is always at least one major stripe in the system,
accompanied by several minor clusters.

Apart from providing confidence that our simulation cap-
tures the essential features of the experiment described above,
here we shall not discuss the dynamics of the stripe pattern
in more detail. Being beyond the scope of the present paper
these results will be published elsewhere.

4 Instability of the homogeneous state

In order to determine the conditions under which stripe for-
mation occurs, we varied the frequency, f , and amplitude,
A. Fig. 4 (top) shows density plots obtained from MD sim-

ulations for a variety of combinations ( f,A). Each of the
54 sub-figures shows the density profile in the direction of
shaking in the interval t = [0, 15] s, where the density was
computed from the particle positions. The lower part of Fig. 4
provides an abstract overview over regions of different char-
acteristics in the parameter space to be detailed below.

In the parameter space ( f,A) we identify three major
distinct regions and a transition region:

(a) static region: for weak forcing (low frequency and/or
low amplitude) the particles essentially rest on the base
plate. No stripe formation is observed and the density
plot is almost invariant in time. Small fluctuations of
density due to the initial conditions are preserved in this
region, resulting in a vertical texture of the density vs.
time plots. This region is indicated by blue shading in
Fig. 4 (bottom).

Fig. 4 Patterns resulting from certain combinations of amplitude and
frequency of the oscillation. Top density profiles versus time for t =
[0, 15] s (same type of plot as shown in Fig. 5) for different sets of
parameters. Bottom abstract representation of the data shown in the top
figure to emphasize the different regions in the parameter space. The

dashed line separating the stripe region from the gas region shows the
function A ω2/g = c µ with c ≈ 1.3 as determined by fitting (see Sect.
5.3 for discussion). The experiment corresponding to the highlighted
parameter set is shown in Fig. 1 (color figure online)
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(b) stripe region: in a certain range of the ( f,A) plane corre-
sponding to intermediate forcing, starting from a homo-
geneous distribution of particles, stripes emerge after
typically 5 s. In Fig. 4 (bottom) this range is indicated
by red shading.

(c) gas region: for strong forcing, that is, large amplitude
and/or frequency, the system behaves gas-like. Here the
particles move irregularly resulting in a homogeneous
density. In difference to region (a), here the small time-
invariant fluctuations of the density due to the initial
conditions (visible as weak vertical texture) are not pre-
served. The gas region is indicated by green shading in
Fig. 4 (bottom).

(d) transition region: the transition between the stripe region
(b) and the static region (a) (towards weak forcing) and
the gas region (c) (towards strong forcing) is not sharp.
In the transition region, pink shading in Fig. 4 (bottom),
short-lived stripe patterns appear and disappear dynam-
ically. This region can, thus, not be clearly attributed to
one of the major regions (a), (b) and (c).

Stripe formation can be noticed at intermediate driving fre-
quencies and intermediate to large amplitudes. In this region
in the ( f,A) parameter space, the stripe pattern is essentially
stable during the entire simulation. While fluctuations of the
density pattern are noticeable they are small such that the
number and position of the stripes are essentially invariant.

5 Mechanism of the stripe formation

In order to identify the mechanism which is responsible for
the formation of the stripe pattern, we performed MD sim-
ulations starting with the setup described in Sect. 3.2 as a
reference system (referred to as full-fledged system). In the
subsequent steps we modified this setup with respect to the
boundary conditions and the interaction forces. The results
of the simulations were then compared to the results due to
the reference system.

Five different setups were investigated:

(a) Full-fledged simulation (see Sect. 3.2 for the description)
(b) System with periodic boundary conditions in the direc-

tion perpendicular to the vibration
(c) System with suppressed friction of the particle-particle

contact
(d) System with suppressed vertical coordinate (effective

2D-system)
(e) System of elastic particles

All simulated systems (b)–(e) are derived from the full-
fledged simulation (a) but with particular modifications.
Thus, all properties and system parameters of the cases

(b)–(e) are the same as for case (a), except for those wich are
explicitly mentioned. For each of the cases, we performed
simulations starting with different initial distributions of the
particles and obtained results very similar to the examples
presented here.

5.1 Setup (a): Full-fledged simulation

As a reference system to compare with, we first run the sim-
ulation using the full force models as described in Sect. 3.2
for 20 s.

Figure 5 shows the evolution of the density profile along
the direction of the oscillation. Time progresses in vertical
direction, t = (0 . . . 20) s. The spontaneous formation of
stripes starts about (5 ± 1) s after the simulation was started,
depending on the concrete initial positions of the particles.
The initial distribution of the particles influences the number,
positions, sizes and orientations of the stripes.

5.2 Setup (b): Periodic boundary conditions

To test for the influence of the side walls, we replace the
walls of the container in the direction perpendicular to the
oscillatory motion by periodic boundary conditions. We find
that the stripe formation occurs after about (5±1) s (Fig. 6b),
that is, slightly later than in the reference case. We observe a
larger number of slightly smaller stripes than in the reference
system. Compared with the reference system (a), we notice
also a larger number of transient stripes which appear and
disappear in the course of time. It can be concluded, that
walls are not critical for stripe formation and the difference
in the width of the container between the simulation and the
experiment is of minor importance. The additional damping
caused by the particle-wall friction may abet stripe formation,
but it is not necessary for it. The overall characteristics of the
density plot are rather close to the reference system, case (a),
see Fig. 5.

Fig. 5 Particle number density in the direction of shaking as obtained
from MD simulation at ω = 20 s−1 and A = 2.5 cm. The vertical axis
shows time. Blue color encodes density zero (no particles), red encodes
the density corresponding to close packing (color figure online)
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5.3 Setup (c): frictionless particles

Choosing µ = 0 for the Coulomb friction parameter effec-
tively turns off friction, see Eq. (2). In setup (c) we simu-
late particles which interact frictionless with other particles
(µ = 0) but not with the container walls.

The resulting density profile obtained from the MD sim-
ulation of the system (Fig. 6c) does not reveal any sign of
stripe formation. Instead, during the entire simulation time
the density profile stays approximately homogeneous with
some fluctuations that are always present in a disordered
many-body system. The slight inclination of the initial ran-
dom pattern to the left is caused by the direction of the initial
thrust of the shaking. It fades away during the first seconds
of the simulation. Note that this inclination is noticeable in
all density plots in Figs. 5 and 6, albeit not as clearly as in
the present case.

To elucidate the idea of the somewhat unphysical assump-
tion of frictionless particle-particle contact and at the same
time frictional particle-wall contact, let us consider the trans-
fer of energy between the externally driven container and the
particles inside the container. In contrast to systems with
vertical driving, here the only mechanism of energy transfer
is via tangential (frictional) forces (remember that we have
periodic boundary conditions in the direction of shaking). If
we would switch off friction between the floor and the par-
ticles, the particles would not receive any energy from the
driving and stay in their initial position.

Given energy transfer via friction, an isolated particle feels
a tangential force from the floor resulting in two different
modes of motion: (a) the particle feels a torque and changes
its angular velocity and (b) the particle is accelerated because
of the linear force. The particle resists against rolling through
its moment of inertia. A particle having a larger moment
of inertia while keeping the mass constant, would hardly
change its angular velocity but significantly change its linear
velocity. On the other hand a particle with a smaller moment
of inertia would instead change its angular velocity but not
significantly its linear velocity. Consequently, any mecha-
nism counteracting rolling would lead to enhanced transfer
of energy to linear motion.

Such a counteracting mechanism may be established when
a particle is not isolated but in frictional contact with other
particles. In this case, the frictional forces with other particles
may lead to a torque opposite to the torque caused by the
moving floor.

Thus, frictional contact with another particle has a sim-
ilar effect as an increased moment of inertia, namely an
enhanced transfer of energy to the linear motion. Indeed,
since the external driving acts on both contacting particles in
the same way, we find a situation of frustration sketched in
Fig. 7.

If the particles would both roll on the floor (no sliding),
inevitably the particles must slide at their point of contact as
here the vectors of velocity of the surfaces point in opposite
directions. This in turn would lead to an apparently increased

Fig. 6 Evolution of the particle number density obtained from MD
simulations. The 4 subfigures correspond to the systems (b)–(e)
described in the beginning of Sect. 5, namely: (b) system with peri-
odic boundary conditions in both horizontal directions, (c) frictionless

particles, (d) suppressed motion in vertical direction, and (e) elastic
particles. Apart from the named modifications, all other system spec-
ifications are identical to the reference system described in Sect. 5.1.
Color coding is the same as in Fig. 5 (color figure online)
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Fig. 7 Sketch of the frustrated situation of two particles in frictional
contact rolling on the floor. See the text for discussion

moment of inertia regarding the contact with the floor and to
an enhanced transfer of energy of the linear motion.

The described mechanism established an important differ-
ence of the energy transfer and, thus, the motion between par-
ticles located in the stripes and particles moving in between
the stripes: particles in the stripes are in frictional contact
with their neighbors and according to the arguments above
less mobile with respect to the moving floor and consequently
also with respect to one another.

This situation is somewhat similar to the formation of
clusters in a dilute force-free granular gas. Here cluster-
ing is attributed to a pressure instability due to increased
dissipation rate in regions of increased density [53], that
is, smaller relative mobility. Related separation of granular
gases in dense and dilute regions due to pressure instabilities
are also observed in driven gas systems, e.g. [66–68] includ-
ing vertically vibrated shallow layers which also reveals
instabilities due to negative compressibility of the effective
fluid [69].

The above arguments would support the hypothesis that
tangential forces, that is, friction is responsible for the stripe
formation since it leads to the mentioned frustration with the
consequence that particles in dense regions are less mobile
with respect to their neighbors. This hypothesis can be tested
by disregarding the friction between the particles but not
between the particles and the floor. By this, we suppress
the frustrated situation and the pressure instability should
be avoided.

Our results presented in Fig. 6c support this hypothesis:
With disabled sliding friction between particles, no jamming
of the particles is observed and the system behaves largely
like independent spheres.

Exploiting the frustration argument we can motivate the
border between the stripe region and the gas region in the
(A,ω)-plane, see Fig. 4. Obviously, the frustration effect
ceases when particles in contact can slide collectively on the
floor. This is the case when the maximal tangential force due
to the driving, m A ω2, exceeds the maximal tangential force
Ft the particles can afford to resist sliding which in turn is
related to the normal force Fn = m g via Coulomb’s friction

law, Ft = µ Fn . Consequently, the frustration effect which
is responsible for the stripe formation ceases when

A ω2 = Ft

m
= µ

Fn

m
= µ g , (4)

A ω2

g
≡ & = µ. (5)

Note that the above condition assures that the particles can
slide in singular points in time during the oscillation x =
A cos(ω t), when ω t = n π . To have a noticeable effect on
the dynamics, the sliding condition needs to be fulfilled at
least for a certain non-negligible part of the period, that is,
instead of the above condition we better write A ω2/g = c µ.
By fitting the latter function to match the transition region in
Fig. 4 (dashed line), we estimate c ≈ 1.3.

Note that the situation in our system is similar to a
horizontally shaken sub-monolayer of particles differing in
their coefficient of friction having a similar effect regarding
the mobility. Here one observes “segregation by friction”
[57,58], which had been attributed to frustration effects, too.
In such a frustrated situation one or more of the contacts of
the particle (with the floor and its neighbors) must turn from
rolling to sliding to overcome a kind of jamming situation.

It was shown that such frustration effects may lead to inter-
esting phenomena, even in one-dimensional systems when
cylinders roll on a plane while being in contact [61]. In sys-
tematic experiments [52,59] and simulations [60,70] of peri-
odically driven and un-driven systems it was found that the
effect of rolling is much smaller than the effect of sliding, for
the system dynamics.

5.4 Setup (d): effective 2D-Simulation

In both our experimental work and our simulations we did
not notice significant dynamics with regard to the vertical
direction. This contradicts the work by Strassburger et al. [46]
and Betat et al. [47] who explicitly assumed that the particles
are jumping. This assumption is the main foundation of their
mathematical description using a Cellular Automaton model.

Of course, in any three-dimensional system there is always
some dynamics in any direction of space. Therefore, to defi-
nitely exclude that jumping of particles might be responsible
for stripe formation, we modified the used force model by
setting all forces for inter-particle collisions to zero in the
vertical direction.

The corresponding density profile, Fig. 6d, does reveal
stripes in agreement with our experimental observation,
Fig. 1, and also the reference setup, see Fig. 5.

Note that restricting the model to a 2D system in this way,
introduces a strong idealisation of the model since, obvi-
ously, it does not comply with Newton’s equation of motion.
Consequently, we must not take the results too literally.
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In particular we should refrain from discussing any quan-
titative features of the density plot.

5.5 Setup (e): elastic particles

Finally let us consider the influence of dissipation to stripe
formation. To this end, we replace the dissipative normal
force, Eq. (1) by the pure Hertz force, that is, A = 0. Note
that there is still dissipation according to the damping of
the tangential force via γ t , consequently, we do not observe
unlimited increase of the kinetic energy. The corresponding
density plot, Fig. 6e, reveals stripes which differ in shape and
size from the reference setup but appear qualitatively similar
otherwise.

6 Conclusion

We investigated a horizontally vibrated granular sub-
monolayer of almost spherical particles confined in a rec-
tangular container and found self-organized stripe patterns
in agreement with earlier results [46,47]. We reproduced the
experimental observation in MD simulations to obtain qual-
itative agreement with the experiment. As in the experiment,
the pattern varies dynamically in the course of time, that
is, number and position of the stripes are subject to random
fluctuations. Stripes, that is, regions of large particle number
density may spontaneously appear and disappear as well as
merge and disintegrate. Nevertheless, some features of the
pattern stay invariant, for example the typical spacing of the
stripes and their approximate number.

In [46,47] the system was modeled by means of a Cellular
Automaton (CA) with the main assumption that during the
oscillation period the particles jump from one stripe (region
of enhanced density) to the next. However, neither in the
experiment nor in the simulation we could find any evidence
of particles being significantly lifted from the floor. Even if
we completely suppress motion in vertical direction in the
simulation, formation of stripes occurs. Consequently, we
believe that the mentioned CA model provides an inadequate
description of the phenomenon.

In order to identify the origin of pattern formation,
we performed MD simulations of modified systems where
we systematically excluded possible scenarios. This way,
we excluded that (reflective) boundary conditions, dissipative
properties and the dynamics of particles in vertical direction
are essential for the formation of stripes. Comparing these
modified systems with the full-fledged reference system, in
all cases we could clearly observe stripe formation with only
quantitative (small) modifications of their characteristics.

Only suppression of the frictional particle-particle inter-
action led to simulation results where the initial homoge-
neous distribution of particles remained stable, that is, no

pattern formation could be observed in this case. Based on
this observation, we proposed an explanation of the mech-
anism of pattern formation based on frustration of particles
in dense regions who are simultaneously in contact with the
floor and one or more of their neighbors. Such a frustra-
tion scenario and pattern formation originating from it was
reported also for one-dimensional few-particle systems [61].
The frustrated dynamics leads effectively to an enhanced fric-
tion coefficient of particles in dense regions (stripes) as com-
pared to particles in dilute gaseous regions.

While friction is essential to the effect reported here, we
wish to mention that also pure dissipation without friction
would lead to an inhomogeneous density distribution. In this
case, the collisions of particles with the moving walls would
lead to an raised granular temperature in the vicinity of the
walls. Since in the absence of friction, the side walls are
the only sources of energy, temperature and, thus, pressure
decrease with distance from the walls. Consequently there
is a permanent pressure pushing the material away from the
walls and as a result, asymptotically, density would monoto-
nously increase with distance from the wall. The asymptotic
stationary state would have a single stripe in the center of
the box. In the case of frictional particles, the described frus-
tration scenario causes input of energy also from the bottom
wall via tangential forces leading, consequently, to the char-
acteristic stripe pattern.

We believe that the presented results might lead also to a
better understanding of the dynamics of horizontally agitated
sub-monolayers under swirling excitation [48–51]. In these
systems, dynamical transitions between gas-like and solid-
like behavior as well as pronounced segregation phenomena
are observed. In view of the results presented here, these
effects may also be caused mainly by hindrance of rolling
motion when particles are in frictional contact. Despite of the
plain existence of a region of increased density in the center of
the container which may be explained based on kinetic theory
[66,67], the mechanism of segregation and phase separation
in these systems is still not sufficiently understood.
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