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Abstract

1995 führten Strassburger et al. [27] ein Experiment durch, bei dem sie eine Sub-
monolage aus Teilchen horizontal schüttelten. Ihre Untersuchungen ergaben, dass
sich Teilchen unter Ein�uss des Schüttelns in Streifen anordneten. Um dieses Ver-
halten zu beschreiben, entwickelten sie ein einfaches zelluläres Automaten Modell:
Während eines Stoÿes springen alle Teilchen gleichzeitig in Stoÿrichtung, bis sie auf
einem linken und einem rechten Nachbarn zur Ruhe kommen. Experimentell lies sich
das Springen jedoch nie beobachten, was vermuten lieÿ, dass die Streifenbildung eine
andere Ursache hat.
Ziel dieser Arbeit ist, den Schlüsselmechanismus für Streifenbildung in einer horizontal
geschüttelten Submonolage Teilchen zu identi�zieren. Dazu wird das Experiment
von Strassburger et al. wiederholt um den E�ekt zu bestätigen. Basierend auf dem
Experiment wird eine kraftbasierte Vielteilchensimulation durchgeführt, um gezielt
das System zu untersuchen.
Es zeigt sich, dass Teilchen während der Simulation zwar springen können, dies je-
doch nicht essentiell für ihre Streifenbildung ist. Als Grundlage für Streifenbildung
lässt sich Reibung zwischen Teilchen identi�zieren, die dazu führt, dass Teilchen in
Kontakt nicht mehr frei rollen können, und sich zusammen mit dem Boden des Schüt-
telbehälters bewegen. Weiterhin �ndet sich, dass Streifenbildung nur bei höheren An-
regungsamplituden, und geringeren Anregungsfrequenzen auftritt. Andere Kombina-
tionen führen dazu, dass den Teilchen im System entweder nicht genügend Energie
zugeführt wird um Streifen zu bilden, oder aber zu viel Energie bekommen und einen
gas ähnlichen Zustand einnimmt.
Im Vergleich zwischen Experiment und Simulation zeigt sich, dass die im Experi-
ment genutzten, nicht runden Teilchen, die nur eingeschränkt rollen können, zu de-
formierten Streifen führen, innerhalb derer die Teilchen quasi stationär sind. In der
Simulation hingegen wurden perfekt runde Kugeln genutzt, und Streifen mit geringer
Deformation erzeugt, innerhalb derer die Teilchen hohe Mobilität aufweisen.
Während der Vorbereitung der Simulation wurden Stöÿe dreidimensionaler Teilchen
untersucht. Dabei ergab sich, dass der normale Restitutionskoe�zient negative Werte
annehmen kann. Dieser E�ekt war bereits für Hochgeschwindigkeits-Einschläge von
Nanoteilchen bekannt [52]. Es lässt sich jedoch zeigen, dass dieser E�ekt ein allge-
meines Phänomen ist, das aus der Geometrie des Stoÿes resultiert. Negative Restitu-
tionskoe�zienten können für alle Arten von Kollisionen beobachtet werden, die von
�niten Wechselwirkungskräften bestimmt werden.
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1. Strati�cation in granular media
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Granular media subjected to external agitation have a tendency to segregate, rather
than to mix. This phenomenon is widespread in nature and is of enormous importance
in industrial applications [79, 54, 40]. Used since millennia by peasants to separate
cha� from grains or potatoes from earth, it is now widely used to sort materials in
the mineral industry [36]. Segregation can be found for most types of mechanical
agitation, like convection [38], hopper �ows [29, 46, 7, 6] or �ows in rotating drums
[67, 44, 50]. One typical phenomenon associated with segregation of particles in
granular media is the so-called "Brazil-nut e�ect", which consists of larger particles
emerging on top of smaller particles when vertically shaken. Segregation can create
interesting patterns, as for example a petal like structure in the centre of a binary
mixture which is placed in a rotating drum [46].

1.1. Mechanisms of granular segregation [36]

The basic mechanisms of segregation are still not fully understood and subject of
active research [47, 5, 35].
One type of segregation mechanism is called kinetic sieving [39, 4, 82]. In a shaken
granular medium, voids between grains are constantly created, and smaller or heavier
particles are more likely to fall into them than larger or lighter particles. This was
shown by Rosato et al. [4] with a Monte-Carlo simulation of a vertically shaken box
�lled with mono-disperse disks and one large intruder near the bottom. After each
vertical shake the system �nds a new local equilibrium con�guration by letting the
individual particles move down- and sidewards. During this process voids between
particles can appear, and voids below the large particles are likely to be �lled with
smaller particles, before the large particle returns to its initial position. Thus, the
large particle gradually rises upwards.
A di�erent explanation for the Brazil-nut e�ect based on granular convection was
proposed by Knight et al. [38, 37, 93] in 1993. When the particles move up, they
are compacted and frictional forces from the wall penetrate deep into the bulk of
grains. When the particles move down again, the bulk is diluted and wall friction
a�ects only particles close to the wall. This leads to a convective motion with larger
particles being able to move up in the large channel in the centre. However, due to
conservation of mass and symmetry of the convection cells, the channels on the side
of the walls are smaller than the channel in the centre. Therefore, the large particles
are not able to move down and get stuck on the top.
Dilute granular systems show di�erent segregation mechanisms. Inelastic collisions
can let the granular temperature vary across the system. The granular temperature
T is de�ned [66] as the average kinetic energy of the particles
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where N is the number of particles, m the mass of the particle and vi its velocity.
Thermal di�usion of particles results from the temperature gradient, but di�usion
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rates depend on particle properties like mass and size. This leads to large particles
clustering in "cold" regions and small particles accumulating in "hot" regions [51, 11,
83].
Condensation of grains in a gravity �eld may also lead to granular segregation. For
each species of particles, a critical temperature

Tc ∼Md2g, (1.2)

can be introduced [14, 15], where M is the total mass of the gas per unit area at the
bottom of the system, d is the particle diameter and g is gravity. Particles whose
critical temperature is above the system temperature will condense on the bottom of
the system, while particles with smaller critical temperature is below will not. Since
larger or heavier particles have a higher critical temperature they condense �rst, thus
creating a vertical segregation of particles.

1.2. Segregation in a rotating drum [36]

Motion of particles in a rotating drum, whose axis is perpendicular to the direction
of gravity constitutes a topic of active research in the area of granular media [85, 36].
In fact, many applications related to mixing or milling of granular materials involve
particle motion in a rotating drum.
If the materials in the drum slightly di�er in physical or geometric properties, then
axial or radial segregation e�ects can occur, which may pose a problem in situations
where homogeneous mixtures are desired.

Segregation in radial direction

A drum �lled with particles of two di�erent radii or densities shows segregation in the
radial direction [85, 47, 5]. The major factor for segregation is the so-called 'random
�uctuating sieve', �rst described by Savage and Lun for particle �ow on an inclined
chute [82]: Small or heavy particles get stuck in the spaces between larger particles
during their �ow down the chute. A similar e�ect can be seen in rock slides, where
large rocks are always found at the base of the avalanche. The maximum particle
radius that can be trapped in a speci�c niche in an avalanche without momentum
transfer was analysed by Baumann, Jánosi and Wolf [22]: if the radius of the rotating
drum is su�ciently large, then every particle will �nd a niche that stops it. They
observed in numerical simulations that large particles gather at the centre of the
drum while small particles accumulate on the rim of the system, in less than one
turn. Segregation in a rotating drum does not only occur if particles have di�erent
sizes, but also in mixtures of particles of di�erent densities. After a short time,
accumulation of dense particles in the centre of the drum can be observed [23].
At low rotation velocities the �ow is con�ned to the free surface. The bulk shows
solid-body rotation and transfers the particle distribution from the bottom to the top.
A core is formed by small, heavy particles, surrounded by lighter, bigger grains. For
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higher rotation velocities, the segregation pattern reverses: bigger particles assemble
in the core while small particles remain in the periphery.
Depending on the initial conditions petal-like patterns appear at low rotation veloci-
ties (Fig 1.1).

Figure 1.1.: Radial petal patterns in a rotating drum [46].
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Segregation in axial direction

In 1939 Oyama described an experiment, in which axial segregation occurred in a
three-dimensional drum [40].

Figure 1.2.: Schematic view of Oyama's experiment after segregation has occurred.

His experiment consisted of a long cylindrical drum �lled homogeneously with two
types of grain of the same material, but of di�erent sizes and colours. The cylinder was
then rotated horizontally around its axis. Oyama observed that, at small rotational
velocities, the small and the large beads arrange themselves in segregated stripes
perpendicular to the rotation axis (�g 1.3).

Figure 1.3.: Axial segregation in a rotating long drum [35].

The reason for this e�ect are the di�erent angles of repose of the di�erent species.
Subsequent investigation by Savage [81] of systems with two di�erent species of par-
ticles at high angular velocities showed segregation e�ects as well. These experiments
showed that, at high rotation velocities, the angle of repose plays a minor role, as the
material is in the �ow regime. For low rotation rates no stable bands emerge, but
smaller grains can assemble in irregular non-stationary "clouds" [36].
Stripes of di�erent materials can merge into fewer, broader stripes, with the number
of stripes decreasing or separating into more, smaller, stripes in time. The decay rate
of the number of stripes S(t) is basically independent of the rotation speed in the
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range of ω ∈ [10, 22.5] rpm, and can be �tted with a logarithmic function,

S(t) = S0

[
1− s log

(
ωt

2π

)]
, (1.3)

where S0 = 55 and s = 0.092 are �tting constants [35]. Stripes may even completely
disappear upon change of the angular velocity.

1.3. Strati�cation [36]

Granular strati�cation produces layered structures like those shown in �gure 1.4. The
layers appear in near surface �ows of binary mixtures, like in sand piles or rotating
drums [46, 28, 48], where particles di�er in size and roughness, thus having di�erent
angles of repose. The main mechanism behind this phenomenon has been attributed
to kinetic sieving in avalanches on the surface [81, 45]. During such an avalanche,
voids open between particles in the �owing layer and smaller particles are more likely
to �ll these voids. This results in a net downward �ux of small particles, which is
compensated by an upward �ux of larger particles to maintain a zero total particle
�ux across the �owing layer. Large particles roll on top of small particles, giving the
avalanche the form of a rolling double layer. Upon reaching the bottom, the avalanche
creates a kink, that stops the incoming particles and moves upwards to the top of the
system. A double layer of small and large particles is then left behind (�g 1.4), after
which a new avalanche forms, and the process begins anew.

Figure 1.4.: Strati�cation in a granular avalanche [46].
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2. Strati�cation in in a horizontal

submonolayer
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2.1. Horizontally vibrated granular media

Granular media can develop a rich variety of segregation patterns when subjected
to horizontal shaking. Segregation e�ects of two- and three-dimensional horizontally
vibrating granular systems have been reported both experimentally [84, 72] and in
simulations [71, 73]. Simple models have been proposed to explain the physics behind
the origin and evolution of the observed patterns [58, 12]. In experiments, agitation
results from either shaking a tray, which serves as a substrate for an ensemble of
particles, or oscillating a �uid, in which the grains are immersed [59].
Starting from an initially homogeneous state, a horizontally shaken binary mixture
evolves into a pattern of segregated stripes perpendicular to the shaking direction (�g
2.1). Dry systems then display coarsening, di�using the stripes due to the presence of
tray noise, whereas wet systems reach a steady state since in this case adjacent stripes
emerging in the system have enough space to oscillate without interacting [59].

Figure 2.1.: Evolution of a binary mixture on a horizontally oscillating tray [59].

Ciamarra et al. investigated a binary mixture of large-heavy mono-disperse disks with
an area fraction φh and small-light poly-disperse disks with area fraction φl. These
authors found, that, when the system segregates into stripe patterns due to hori-
zontal shaking, the light particles are always in a disordered con�guration, resulting
from their diversity, whereas the heavy particles can be found in ordered crystal-like
con�gurations as well as in disordered �uid-like con�gurations. Furthermore, the au-
thors found that the area fraction of the species is crucial for stripe formation: stripes
form only for high enough concentrations (�g 2.2). Segregation into stripes appears
at higher concentrations of particles. Increasing the concentration even further leads
to crystallisation of the stripes. At su�ciently high concentrations the initial con�g-
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uration jams, and the system assumes a glassy state. From their results, Ciamarra
et al. concluded that the area fraction of the grains can be interpreted as an inverse
temperature as the system moves from an disordered to a segregated state when the
area fraction increases [59]. Further investigation by Reis and Mullin has shown that
the segregation transition exhibits features of a continuous phase transition [72, 71].

Figure 2.2.: State of a binary mixture as a function of the area fraction of the com-
ponents [59].

Letting the binary system start from an ordered state in which the two components
are separated into two bands, and subjecting it to horizontal oscillations, growing
wavy patterns appear. Over time, this surface modulation leads to the evolution of
alternating bands of segregated stripes (�g 2.3) [58].

Figure 2.3.: Evolution of a mixture of heavy (red) and light (blue) particles subject
to horizontal oscillation [58].

Each particle species is associated with a di�erent characteristic time-scales and thus
oscillates at di�erent amplitudes and phases. The initially �at surface between the
two components then develops surface modulations with growing amplitude, resulting
in segregated stripes perpendicular to the driving direction [58].
Stripe formation in horizontally oscillated media not based on segregation was inves-
tigated by Strassburger et al. [27] using a tray �lled with one to three monolayers
of poly-disperse glass beads and shaking it horizontally. They observed ripple like
patterns, perpendicular to the direction of motion, when the shaking frequency is
lowered below a critical frequency (�g: 2.4).
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Figure 2.4.: Stripe formation in 3, 2, and 1 monolayers of grains under horizontal
oscillation [27].

To describe this e�ect, they proposed a cellular automaton, based on all particles in
the top layer simultaneously jumping in the same direction1.
Segregation in an �uid immersed system was investigated by Sánchez et al. [77].
Their experiment consisted of a mixture of equal-sized glass and bronze spheres, fully
immersed in a water �lled tube, which was horizontally shaken. They observed,
that, as the mixture became �uidised, the heavier bronze particles slowly sank to the
bottom and accumulated there. These bronze rich regions at the bottom then slowly
merged and formed stripes perpendicular to the direction of vibration. After a few
minutes the entire system had separated into distinct regions of bronze spheres and
regions of glass spheres (�g 2.5).

1This model is further explained in 3.1
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Figure 2.5.: Stripe formation in a horizontally oscillated �uid immersed granular mix-
ture as observed by Sanchez et al. [77].

Using MD-simulation Sánchez et al. showed, that the stripe forming mechanism
is closely related to that of �uid-driven separation in vertically vibrated granular
mixtures [77, 63, 62]. Based on these results a microscopic separation mechanism was
proposed. Its two key features are: (1) the container vibration drives the �uid back
and forth through the system, (2) the two components of the mixture are di�erently
a�ected by the �uid. Consequently one species will move with respect to the other
and is dragged out of regions rich with particles of the other species. Clusters of same
particles have little tendency to break apart as they are moved in the same way by
the �uid. This process repeats until a stable con�guration is reached [77].
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2.2. Experimental investigation of a horizontally

vibrated submonolayer

Based on the experiment by Strassburger et al. [27], a granular submonolayer, sub-
jected to horizontal oscillation, is investigated experimentally. The behaviour of the
bulk of grains is recorded and its density �eld is calculated. During the observation,
the system reveals the formation of stripes which merge in the course of time into big-
ger clusters. This e�ect is robust enough with respect to the forcing, that it appears
even when the container is shaken by hand.

2.2.1. Setup

The experiment consists of a horizontal, smooth aluminium tray of dimensions (x, y, z) =
500×100×50mm3 (�g 2.6, 2.7a and �g 2.7b), in which the grains are vibrated horizon-
tally. The tray is mounted on a OSP-E linear driver by Origa Systems Plus, powered
by a stepper motor, whose amplitude and frequency of the sinusoidal movement can
be controlled via a PC.

Figure 2.6.: Sketch of the setup.

The motor controller is connected with a camera to allow phase triggered image
recording. The motion of the shaker is unidirectional in x and sinusoidal. After the
initial �uidisation (section 2.2.5), amplitude and frequency are kept constant during
the experiment. Images are recorded with a Luminera Lucam-camera mounted above
the tray (�g 2.7d). The tray is �lled with a sub-monolayer of mustard seeds with an
average diameter of (2.14± 0.22)mm.

13



(a) Side view (b) Top view

(c) LED mount (d) Camera mount

Figure 2.7.: Setup of the experiment. Figure (a) shows the apparatus from the side,
�gure (b) from the top, �gure (c) the illumination of the experiment and
�gure (d) the camera position in the experiment.
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2.2.2. Image acquisition

Image acquisition is done by a Luminera Lucam 125C Camera mounted top down
above the experiment (�g 2.7d). The maximum resolution of the camera is 1280×1024
pixels. The camera has a hardware I/O-interface, which serves as an input for an
external trigger signal from the shaker. The camera is equipped with a lens with
a focal length of 16mm. The �eld of view is chosen such that the entire length of
the box at one of its reversal points can be observed. Images are taken in bitmap
format, converted into grayscale and cropped to only include the area within the tray.
A background image is created by averaging over 30 sample images taken with the
experiment running without grains.

2.2.3. Illumination

The experiment is illuminated with four 45 cm long red LED stripes, mounted on
metal bars parallel to the long sides of the box (�g 2.7c), and with a maximum
luminous �ux of 400 lm. This arrangement was chosen to evenly illuminate the tray.

2.2.4. Material

About 4800 mustard seeds are used as grains (�g 2.8). The number of particles has
been determined by �lling a box with length 12.5 cm and width 6.6 cm and dividing
the resulting volume by the average volume of the particles.

Figure 2.8.: Small sample of the mustard seeds used in the experiment.

To �lter out particles with high deviations in form or size, a Grimm-type [41] manual
sorting mechanism is used. The average diameter of the grains is d = 2.14± 0.22mm
calculated from the diameter of 20 randomly selected seeds. The diameters are de-
termined by measuring the longest axis of the particle with a slide gauge.
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Table 2.1.: Measured diameter of the mustard seeds in mm
Particle 1 2 3 4 5 6 7 8 9 10

diameter d [mm] 2.32 2.04 1.85 2.30 2.42 1.80 2.23 2.36 2.17 2.34

11 12 13 14 15 16 17 18 19 20
2.12 2.11 2.53 1.90 1.79 2.15 2.34 2.19 1.85 2.05

2.2.5. Experimental method and image processing

The particles are placed inside the tray and manually stirred until they appear homo-
geneously distributed. The apparatus is then set into motion with a driving frequency
of 5Hz and an amplitude of 2 cm. This �uidises and further homogenises the system.
Image recording is started and shaking frequency and amplitude are lowered to 3Hz
and 1 cm. Images are recorded at a framerate of about 3 images per second for one
hour after which the experiment is stopped.
The recorded images are read as grayscale matrices in Matlab. From these matrices
the grayscale matrix of the background image is subtracted to remove the background
and only the particles remain (�g 2.9).

(a) The image as recorded.

(b) The averaged background image.

(c) After subtracting the background only the particles remain in the image.

Figure 2.9.: An example of image processing. At �rst the image (2.9a) and back-
ground (2.9b) are recorded. Then the background is subtracted from the
image (2.9c). For clarity the colours of the last image are inverted.

The columns of the resulting matrix, representing the width y of the system, are
averaged to create a vector containing the brightness distribution of the image in
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x-direction (�g 2.10). With the assumption that brighter spots represent a higher
density of the seeds, the resulting vector contains the density pro�le of the system.

Figure 2.10.: Sketch of Evaluation procedure.

Since the LED-stripes are shorter than the box, the sides of the box are less illumi-
nated than the centre. This leads to a brightness gradient, which is visible in the
images of the experiment as brighter areas in the left and right sides of the pictures.
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2.2.6. Observation

Short term: Formation of stripes

During the �rst 60 seconds of the experiment, images are taken every 25ms (�g
2.12). The camera exposure is set to 4.0ms. The initially homogeneous distribution
(2.12(a)) shows formation of irregular clusters in the central area of the box after
about 1 second (2.12(c)). During the next seconds more clusters appear over the
whole box (2.12(e)) approximately equally distanced from each other, and begin to
merge into stripes perpendicular to the direction of shaking, until the system shows
distinct stripes (2.12(g)-(j), 2.11).

Figure 2.11.: Clearly distinguishable stripe patterns after 10 seconds. For clarity, the
image is presented with inverted colours.

The particles in the cluster appear to be static relative to the bottom plate, while the
particles outside the stripes are very active. The mustard seeds used in the experiment
have �attened sides. If they come to rest this can lead to a higher amount of energy
being required to get them moving again compared to round objects. Likewise if
two seed touch each other with their �at surfaces their rotational and translational
freedom will be more constrained than two spheres in contact, again leading to an
increased jamming rate. At no point, the particle were observed to jump over each
other.
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A single phase

After stripes have emerged and stabilised (50 seconds), a single phase of oscillation is
investigated. Figure 2.13 shows that the stripes themselves remain stable in position,
but particles not belonging to any stripe move with relative velocity with respect to
the stripes, similar to particles in a gas.

(a)

(b)

(c)

Figure 2.13.: Behaviour of the system during a single phase of shaking. For clarity,
the images are presented with inverted colours.

Furthermore, it can be seen, that, when reverting the direction (�g 2.13(b)), particles
on the sides of the stripes facing the incoming wall can leave the stripes to join the
free particles in-between (�g 2.14). Free particles beyond the stripes can be caught
by these and join the stripes (�g 2.14).

Figure 2.14.: On the left side, the particle is captured by the stripe. When reverting
the direction, the particle is released from the stripe, as shown on the
right side.
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Long term behaviour of stripes

Images are recorded for one hour at every second turning point of the shaker. Ex-
posure is set to 11 ms. During the experimental run, the system transforms from an
initially homogeneous state into stripes. The system begins with many stripes and
then gradually reduces the number of stripes. In the right and left hand sides of the
system (between x = 0.0m and 0.1m and between x = 0.4m and 0.5m) the particles
try to form in stripes, but fail due to agitation from the walls. However, it is ob-
served that the stripes at x = 0.1m and 0.4m absorb parts of the free particles (e.g.
at 2400 seconds). The density pro�les (�gures 2.16) show, that the system starts with
about 12 stripes which after about 100 seconds are reduced to 9 stripes, then after
1400 seconds to 5 stripes and �nally after 3400 seconds to 4 stripes. Comparing the
recorded images with the density �eld, it shows, that the form of the stripes changes
when stripes merge, and stretched amorph accumulations appear(�g 2.15b). These
deformed accumulations may show up as multiple stripes in density, but actually are
connected. Particles formerly belonging to those stripes are released as free particles
again, moving between the deformed stripes and the side walls. During the �rst 200
seconds all stripes move about 5 cm in the direction of shaking, but remain e�ectively
stationary from then on. At 1400 seconds it is observed that two smaller stripes merge
into one bigger stripe. Another e�ect that is observed, for example at 3200 seconds,
is that stripes can fall apart again and distribute their particles over a larger area.

(a) after 0 seconds

(b) after 3600 seconds

Figure 2.15.: The particle distribution after 0 seconds and after 3600 seconds. It is
clearly seen, that the stripes become distorted. For clarity, the images
are presented with inverted colours.
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(a)

(b)

(c)

Figure 2.16.: Density evolution of the experiment during one hour. For clarity the
plot has been split into three pieces.
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3. Modelling
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3.1. A cellular automaton model [27]

To model the dynamics in shallow horizontally shaken sand, Strassburger et al. cre-
ated a simple cellular automaton. This model consists of two rules, applied to the
top layer of the medium to describe the evolution of the system from time Tn to time
Tn+1:

1. Simultaneously every particle in the top-layer �ies alternatively to the left or to
the right until it contacts with another particle.

2. Particles fall until they come to rest on a left and a right neighbour.

These rules are illustrated in �gure 3.1. �

Figure 3.1.: Illustration of the idea of the cellular automaton.

First step: The quasi-simultaneous �ying phase At the beginning of each it-
eration I, two identical matrices L̃ and M̃ hold the positions of all particles in the
system. The matrix L̃ remains unaltered and is used to test if any particles collide
during the �ying phase.

Second step: The resting phase Element M̃ij, which corresponds to the starting
position (i, j) of the particle currently watched, is decremented and element M̃i′j′ of
the new position (i′, j′) is incremented. The new con�guration I+1 is calculated and
L̃ is updated: L̃ = M̃

Here, the indices of the elements represent the location of the particles in the model.
The values of the elements indicate the height of the pile of grains above the initial
surface.
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3.2. Particle Simulation

3.2.1. Idea of Molecular Dynamics Simulations

Granular systems consist of large numbers of particles, that ideally interact only via
short ranged mechanical contacts1. The system dynamics are determined by Newtons
equation of motion for the centre-of-mass coordinates and the Euler angles of the
particles:

∂2ri
∂t2

=
1

mi

Fi(rj,vj,φj,ωj) (3.1)

∂2φi
∂t2

=
1

Îi
Mj(rj,vj,φj,ωj) (3.2)

Fi and Mi are the force and the torque acting on particle i with mass mi and tensor
of inertia Îi.
In the absence of long-ranged interactions Fi and Mi are determined by the sum of
pairwise interaction forces acting on particle i:

Fi =
∑

j 6=iFij (3.3)

Mi =
∑

j 6=iMij (3.4)

If the forces Fij(ri, rj,vi,vj,φi,φj,ωi,ωj) and the torquesMi(ri, rj,vi,vj,φi,φj,ωi,ωj)
are given, the equations of motion can be integrated numerically.

3.2.2. Forces

The most simple model of a particle is a sphere with a radius R. Particles in contact
can then be identi�ed if the sum of their radii exceeds the distance of their centres:

ξij = Ri +Rj − |ri − rj| > 0, (3.5)

where ξij is called overlap or compression of particles i and j with radii Ri, Rj and
positions ri and rj.
The force acting between i and j then is described by

Fij =

{
Fn
ij + Ft

ij if ξij > 0
0 otherwise

(3.6)

Normal Forces

Heinrich Hertz �rst described the interaction force of elastic spheres as a function of
deformation ξ and material parameters Young modulus Y and Poisson ratio ν [30]:

F n
el =

2Y
√
Re�

3(1− ν2)
ξ3/2, (3.7)

1For su�cient small particles long ranged interactions like electrostatics may play a signi�cant role.
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Figure 3.2.: Two-dimensional illustration of the forces acting on particle i in contact
with particle j.

where Re� =
RiRj

Ri+Rj
is the e�ective radius of the colliding spheres.

A generalised form, including viscous damping parameter A, was found later [64]:

F n =
2Y
√
Re�

3(1− ν2)
(ξ3/2 + A

√
ξ
dξ
dt

) (3.8)

Here, A is a function of the material viscosity. In case that the colliding particles
are of di�erent materials, the collision force has to be adjusted to �t the di�erent
parameters using the arithmetic mean of the individual parameters:

A→ 1

2
(Ai + Aj) (3.9)(

1− ν2

Y

)−1
→
(

1− ν2i
Yi

+
1− ν2j
Yj

)−1
(3.10)

Tangential Forces

Modelling tangential forces relates the resulting force on the particles to their relative
tangential surface velocities vtrel at the point of contact. However, since the model for
the normal forces assumes a deformation of the particles, the point of contact is only
an approximation and the tangential forces are inconsistent with the normal forces.
For hard enough particles the deformation becomes su�ciently small compared to
the radii of the particles so that this inconsistency can be ignored.
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The point of contact thus is de�ned as the intersection of the undeformed surface of
sphere i with the vector rij connecting the centres of the spheres rij = ri − rj. The
relative tangential velocity at the point of contact consists of the relative tangential
linear velocity and the contribution of the particles' rotation:

vtrel = (vi − vj)e
t
ij + (Rie

t
ij × ωi +Rje

t
ij × ωj). (3.11)

Using the model by Ha� and Werner [70], the tangential force then can be written
as:

F t = −sgn(vtrel) min (γt
∣∣vtrel∣∣ , µ |F n|), (3.12)

where γt is the tangential damping coe�cient, and µ the Coulomb friction parameter.
For small relative velocities vtrel or large normal forces F n, the tangential force is a
linear shear damping that grows with the relative velocity. It is limited by Coulomb's
friction law: ∣∣F t

∣∣ ≤ µ |F n| . (3.13)

Since the tangential force is determined by surface properties of the particles, there
is no experimentally measurable material constant from which γt could be derived.
It can only be determined á posteriori from comparison of simulation results and ex-
periments. Furthermore, this model does not include static friction, since the relative
velocities vtrel at the point of contact and, hence F

t vanish. It is therefore only valid
for dynamic systems.

3.2.3. Friction forces

Friction forces are dissipative forces, that appear if two bodies in contact move rela-
tive to each other. Two di�erent kinds of frictional forces are distinguished: sliding
friction and rolling friction [53]. If friction is neglectable during sliding, the surface
is called totally smooth, if only pure rolling without sliding is possible and friction is
neglectable, then the surface is called totally rough.

Sliding Friction

Sliding friction occurs when two bodies in contact slide relative to each other. It is
described by the Coulomb friction law

Ffr = −µsF⊥ev, (3.14)

where µs is the material-dependant friction coe�cient and F⊥ the magnitude of the
force acting between the sliding bodies. The friction force counteracts the sliding
motion of the bodies.
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Rolling Friction

Pure rolling is characterised, in that no relative motion exists at the point of contact,
i.e. rolling bodies are �xed in their point of contact at any moment in time [53].
Rolling friction leads to an additional torque that counteracts the rolling motion.
According to Brilliantov and Pöschel [65] the friction torque for a viscoelastic particle
is given by

Mi = −µrvω,ijF neωi
, (3.15)

where eωi
= ωi

ωi
, F n is the normal force acting between the particles and vω,ij is

the magnitude of the relative tangential velocity resulting from the relative angular
velocity ωij at the point of contact vω,ij = |ωi ×Ri − ωj ×Rj|. µr, the coe�cient of
rolling friction, is a function of the material parameters and is given by [65]:

µr =
1

3

(3ηj − ηi)2

(3ηj + ηi)2

[
(1− ν2)(1− 2ν)

Y ν2

]
≡ A, (3.16)

which can be identi�ed with the dissipative constant A for two colliding spheres.

3.2.4. Boundaries

Walls

Rough walls can be modelled out of regular particles that follow a predetermined
trajectory and do not interact with each other. The roughness of the surface can be
controlled by the size of the wall particles and their distance to each other.

Figure 3.3.: 2D-example of an impact on a rough wall.

Smooth walls are de�ned by an origin rwall, a surface normal nwall, and a velocity
vwall. They can be imagined as particles with an in�nite radius Rwall =∞, therefore
the e�ective radius becomes Re� = Rparticle. Particle-wall collision are then modelled
with equations 3.8 and 3.12, where

ξ = Rparticle − (rparticle − rwall) · nwall (3.17)

ξ̇ = (vparticle − vwall) · nwall (3.18)
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Since this method does not need to store information about particles creating the
wall, it is faster than the previously discussed method. As the collision is central
collision in any case, the walls are always smooth.

Figure 3.4.: 2D-example of an impact on a smooth wall.

Periodic boundary conditions

To mimic larger systems periodic boundaries are used in the x-direction and, in some
cases, in the y-direction as well.
Particles are contained inside a box, and those who leave the box are inserted on
the opposite side of the central area again, e�ectively giving the system a toroidal
structure. For the force summation, particles on one boundary of the system also
interact with particles on the opposite side of the system.

3.2.5. Duration of Collisions

For an undamped binary collision, its duration can be estimated via the time τ 0max ≈
1.609, that it takes the particles to reach their maximal compression [89], The total
duration of the undamped collision then is τ 0c = 2τ 0max in reduced units. Transforming
back to unscaled units, one obtains [89],

t =
τ 0c

ζ
me�

2/5
v1/5

, (3.19)

where ζ = 2Y
√
Re�

3(1−ν2) and v is the impact velocity of the particles
For a damped collision, the equation of motion for the deformation ξ reads

ξ̈ +
ζ

me�

ξ3/2 +
ζA

me�

√
ξξ̇ = 0. (3.20)

An analytical solution for the contact time of equation 3.20 exists [89],

τmax = τ 0max +
∞∑
k=1

akβ
kvk/5, (3.21)

but is rather complicated. In the following four �gures equation 3.20 is solved nu-
merically for di�erent material parameters.
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(a) r = 0.0005m; Y = 1e6 kg/(ms2);
v = 0.002m/s

(b) A = 8.5e−6 1/s; Y = 1e6 kg/(ms2);
v = 0.002m/s

(c) A = 8.5e−6 1/s; r = 0.0005m;
v = 0.002m/s

(d) A = 8.5e−6 1/s; r = 0.0005m;
Y = 1e6 kg/(ms2)

Figure 3.5.: Dependence of the contact time tc on dissipation A (a), radius r (b),
Youngs modulus Y (c) and impact velocity v (d).

It shows, that the dissipative parameter has weak in�uence on the contact time of
the collision, compared to Youngs modulus and impact velocity. The contact time
increases with bigger radius of the collision partners.
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3.3. One Particle System

The ripple like patterns, observed in the experiment 2.2 and by [27], are the result of
the collective behaviour of many particles. To properly identify the underlying reason
for strati�cation, understanding of the behaviour of a single particle is required. This
section describes how the behaviour of a single sphere on an oscillating plane is
in�uenced by its material parameters by means of a molecular-dynamics simulation.

Coordinate system

The coordinate system in these and all following simulations is as aligned follows (�g
3.6).

Figure 3.6.: Orientation of the coordinate system used in all simulations. To visualise
the interior of the tray only one wall is shown in the �gure.

The plane in which the motion takes place is the x-y-plane. The x-direction is parallel
to the direction of shaking, the y-direction is perpendicular to this direction. Per-
pendicular to both x- and y-direction is the z-direction, to which gravity is parallel.
The bottom of the system extends from the (0,0,0) in positive (x,y,0)-direction. All
further mentions of x,y, and z refer to this coordinate system.
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Material properties used in the simulation

Table 3.1 shows the parameters that are used to simulate the motion of a single
particle. In all cases, walls and particle have the same parameters.

Table 3.1.: Parameters used in the simulation.
Name Value

radius r 0.0005m
density % 2500 kg/m3

Youngs Modulus Y 106 kg/(ms2)
Normal dissipation A 8.5 · 10−6 s
Friction parameter µpp 0.7
Rolling friction µr 8.5 · 10−6

Tangential damping γt 0.007
Gravity g −10ezm/s2

timestep ∆t 8 · 10−6 s

Since the motion of the box only occurs in x-direction, and there are no other forces
acting in the y-direction, the phase space positions are given by the x-coordinate of
the particle. The shaking amplitude is kept constant at A = 0.025m, and the shaking
frequency is varied between νmin = 5Hz and νmax = 29Hz.

3.3.1. Results

Due to high sliding friction, the particle will immediately start to roll. Sliding contact
then only occurs for a short time when the particle reverses its motion.

Single particle without rolling friction

The coe�cient of rolling friction is set to zero, µr = 0, allowing the particle to roll
inde�nitely. It can immediately be seen, that the mean trajectory of the particle does
not change with shaking frequency, but the particle �uctuates faster around its mean
with increasing frequency (�g 3.7a). The velocity of the particle follows closely the
velocity of the container, but is signi�cantly lower, due to loss of energy from sliding
friction and conversion of the linear velocity into angular velocity (�g 3.7b). Plotting
the phase space of the particle motion shows periodic orbits (�g 3.8a), increasing in
size with higher shaking frequency. Likewise, the particle energy increases (�g 3.8b),
with the particle assuming maximum velocity midway between two reversal points of
the container motion, and then decelerating due to the decelerating of the box.
Increasing the mass of the test particle by changing its radius with constant density
results in the particle reacting slower to change in the agitation force, in accordance
with the laws of inertia (�g 3.9).
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(a) Position without rolling friction (b) Velocity without rolling friction

Figure 3.7.: (a): particle position for di�erent shaking frequencies; (b): particle ve-
locity compared to �oor velocity at 5Hz.

(a) Phase space (b) Energy space

Figure 3.8.: Phase space and energy trajectories for a single particle on a horizontally
shaken surface with di�erent shaking frequencies.
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(a) Change of position

(b) Ascending part (c) Descending part

Figure 3.9.: Change of position of the particle with di�erent masses and magni�cation
of the ascending and descending parts of one oscillation period.
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Single particle with rolling friction

Allowing rolling friction in the system slightly alters the behaviour of the particle.

(a) Position with rolling friction (b) Velocity with rolling friction

Figure 3.10.: Figure (a): particle position for di�erent shaking frequencies; �gure (b):
particle velocity compared to �oor velocity at 5Hz.

The particle is no longer trapped between two points in space, but moves into the
direction of the initial trust, slowly approaching a stable position (�g 3.10a). This
movement is caused by the inertia of the particle, that the agitation �rst has to
overcome. Compared with the experiment, the round particle can move more easily,
and thus overcome inertia earlier than the grains in the experiment. The shaking
frequency of the box shows no in�uence on the mean trajectory of the particle, for
di�erent frequencies the particle follows the same path, only changing the speed by
which it oscillates around the mean trajectory. Like the frictionless case, the velocity
follows the container velocity, at a lower amplitude (�g 3.10b).
The phase space diagram shows, that the particle moves on a helical trajectory with
decreasing change in position between two successive phases, approaching a stable
orbit (�g 3.11a). Likewise the energy parabola moves along the space axis of phase
space into a stable con�guration (�g 3.11b).
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(a) Phase space trajectory for a single agitation
frequency

(b) Energy space trajectory for a single agitation
frequency

Figure 3.11.: Phase space trajectories for a single particle with rolling friction on a
horizontally shaken surface.
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Varying the frequency results in the particles following helical trajectories2. Increasing
the agitation frequency increases the motion of the trajectories in velocity direction
(�g 3.12), but leaves the motion in space-direction unchanged. All agitation frequen-
cies lead to the particles approaching stable con�gurations in the same phase space
region.

Figure 3.12.: Phase space trajectories for a single particle with di�erent shaking fre-
quencies.

2compare �g. 3.11a for the trajectory of a single agitation frequency.
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3.4. Frustration e�ects for rolling particles [18]

Granular media in motion show a strong dissipative character mainly caused by nor-
mal and tangential damping. Inter-particle friction plays an important role, as it
causes hysteresis phenomena like stick-slip. If three particles are in mutual contact,
then at least one particle has to slide due to frustration by geometric constraints.
The rotational modes of the particles organise in such a way, that frictional resis-
tance causing the frustration is reduced [26, 42].

3.4.1. 1D-System

For an 1D array of closed packed hard cylinders, con�ned by horizontal forces at the
ends of the chain and moving with constant acceleration v̇ on a horizontal plane (�g
3.13) this e�ect was �rst studied by Radjai and Roux [21, 95, 26].

Figure 3.13.: Three phases in a one-dimensional array [95, 21].

The particles can roll or slide on the surface and are constrained on both sides with
blocks, that can only slide. This array is pushed to the right. The constraints prevent
the opening of contacts between any two cylinders, and the pushing force is chosen
small enough, that all cylinders stay in contact with the �oor. If all contacts are
non-sliding, there will be no dissipation in the system. However, since the system
is frustrated, at least one contact per particle has to slide. As example, consider
two cylinders in contact with each other and the �oor. If one cylinder is rotating
clockwise with angular velocity ω, the other one has to rotate counter-clockwise with
angular velocity −ω. If then one of the cylinders is rolling on the plane with a velocity
V = ωR, the other is forced to slide with a relative tangential velocity of Vt = 2V ,
which constricts its motion.
Radjai and Roux [21] found that the rotational modes organise themselves into three
di�erent domains, whose lengths depend on the horizontal acceleration, the applied
horizontal stress and the frictional forces [21]. The domains are characterised as
follows:

• In domain 1, the particles roll with an angular velocity corresponding to the
imposed velocity, ω = R

v
. Here, friction stress on particle-plane contacts is

activated and particle-particle contacts are sliding.

• Domain 2 is characterised by sliding contacts. Particles roll in the same direction
as in domain 1, but with decreasing angular velocity along the array. In the
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special case of constant translational velocity V̇ = 0, mode 2 has vanishing
length.

• Domain 3, next to the forcing block, contacts between particles are non-sliding,
with neighbouring particles either counter-rotating or not rotating at all.

Later work by Khidas et. al. showed [95], that mode 2 can be described as a super-
position of modes 1 and 3.
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3.5. 3D Simulation of a horizontal submonolayer

To better understand the underlying mechanism of the pattern formation observed
in the experiment (Section 2.2), the system is reproduced in a force-based molecular
dynamics simulation. These systems are �rst run with three-dimensional dynamics,
normal dissipation and particle-particle friction activated and limited in the ±y-
direction by walls, and then with various parameters deactivated. The system is found
to no longer form clusters, once inter-particle friction is deactivated, suggesting that
the dominant mechanism for stripe formation is jamming of particle-particle contacts,
which results in the jammed particle getting locked to the �oor and moving as pair
until the motion of the �oor is reversed and di�erences in experienced forces separate
the particles again.
The �rst part of this section reviews the method used to create the simulation and
introduces concepts to improve computational e�ciency. The resulting program is
then veri�ed and conservation laws are checked. The third subsection details how
the samples used in the simulations are prepared and gives an overview of the phys-
ical properties of the particles. The last part presents the results obtained in the
simulations.

3.5.1. Simulation method [87, 43]

General Method

The simulation is a forced-based molecular dynamics simulation, that means, the
particles are only in�uenced by the forces acting on them. The simulation is performed
according to the following algorithm (�g 3.14):

Figure 3.14.: graphical representation of the MD algorithm.

1. Initialisation:
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(a) Read the coordinates (ri and the derivatives) and material properties of the
particle from an initialisation �le.

(b) Read external parameters like the simulation time from a con�guration �le.

2. Force calculation:

(a) Find interaction pairs.

(b) Calculate the interaction force for all particles in contact.

(c) Calculate the forces between the particles and the system walls.

3. Time integration:
Calculate the new positions based on the forces acting on the particles.

4. Output:
Write all phase space properties of the system into a �le for later evaluation.

5. Program termination:
The program is terminated after a predetermined time tSimulation or upon occur-
rence of a certain event. Otherwise the simulation is continued at step 2.

Force calculation

Forces that act on particles can either be long-ranged like gravitation, short-ranged
like intermolecular forces or contact forces. Short ranged forces are usually modelled
as long ranged with a cut-o� radius after which their in�uence is neglected. To de-
termine the total force acting upon any particle, it has to be checked which other
particles lie within its in�uence radius. Particles that in�uence each other then ex-
change forces. The total force on one particle is the sum of all individual interactions
plus the contribution from globally acting forces.
The simulation used in this work does not include ranged forces other than gravita-
tion, particle interaction happens only via direct mechanical contact as given by the
force laws in Section 3.2.2.

Numerical Integration of the Equations of motion [10]

The dynamics of the particles in the system are described by di�erential equations
with initial values, the trajectories are determined by integrating the equations of
motion. The standard methods to solve the integrals are �nite-di�erence methods,
which replace in�nitesimal di�erentials like dx and dt with small but �nite di�erences
∆x and ∆t, the di�erential equations become �nite-di�erence equations. These �nite-
di�erence equations then can be processed by a computer to approximately solve the
original integrals.
A variety of methods for numerical integration exists. The following subsections
discuss the two methods that are used in this simulation in detail. For the linear
motion of particles the advanced Verlet-algorithm is used, as it is the cheapest (lowest
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order) algorithm while already considering second derivatives, that is available for
dissipative systems. Additionally to the position it only requires the second derivative
of the position. Due to the non orthogonality of the second derivatives in the rotation
coordinates, using a second order integrator becomes complicated. This complexity
is avoided by using the more simple Euler algorithm instead of the Verlet algorithm.

Euler Integrator The Euler integration method [43] is a Taylor expansion truncated
after the �rst-order term

r(t+ ∆t) = r(t) + ∆tṙ(t) +O(∆t2). (3.22)

From the known or estimated value of r(t), the method estimates r(t+∆t) by extrap-
olating from x(t) the straight line that has slope dr/dt, evaluated at t. The velocity
can be obtained via

ṙ(t+ ∆t) = ṙ(t) + ∆tr̈(t) +O(∆t2). (3.23)

The Verlet Algorithm The Verlet algorithm [43, 17] is a third order integration
scheme, combines two Taylor expansion of the coordinates r(t),

r(t+ ∆t) = r(t) + ∆tṙ(t) + 0.5∆t2r̈(t) +O(∆t3) (3.24)

r(t−∆t) = r(t)−∆tṙ(t) + 0.5∆t2r̈(t)−O(∆t3) (3.25)

Adding these two equations and rearranging them results in

r(t+ ∆t) = 2r(t)− r(t−∆t) + r̈(t)∆t2 +O(∆t4), (3.26)

To estimate the velocities a central di�erence estimator is used,

ṙ(t+ ∆t) =
r(t+ ∆t)− r(t−∆t)

2∆t
+ ∆tr̈(t), (3.27)

where r̈ is the acceleration resulting from the forces acting upon the particle.
As this method requires information from two timesteps, it is not self starting. It has
to be initialised for the �rst timestep, which is done via a backward Euler step

r(t−∆t) = r(t)−∆t(v −∆tr̈).

Simulation timestep

In section 3.2.5 the contact time of the particle-particle collisions is calculated. To
properly resolve the collision while still maintaining low computational costs, the
timestep is chosen to be 1/20 - 1/15 of the collision time.
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Optimisation

The basic algorithm considers each pair of particles for the force calculation, meaning
the complexity is of O(N2). Since the forces between granular particles used in this
simulation are contact based, only the closest neighbours of the particles need to be
considered for interaction. This can be used to considerably increase the e�ciency of
computation.

Link-Cell-Algorithm The simulation area of size lx × ly × lz is divided into nx ×
ny × nz identical rectangular boxes of size (lx/nx)× (ly/ny)× (lz/nz). The length
of the boxes must be at least the diameter of the largest particles.
In the beginning of each timestep, all particles are assigned to a box with index
(x, y, z). All particles in that box are counted. Particles in this box then only collide
with particles in the same box, or with particles in neighbouring boxes. To avoid ac-
counting the forces between particles in two di�erent boxes twice only boxes logically
after the current box are considered during the determination of the forces.

Figure 3.15.: 2D-example of the linkcell algorithm.

In this example, the current box is (ix, iy) and the neighbouring boxes for the force
calculations are (ix + 1, iy),(ix − 1, iy + 1),(ix, iy + 1) and (ix + 1, iy + 1).

43



3.5.2. Veri�cation

To verify the simulation, it is checked for consistency with conservation laws. One
particle is shot in an head-on collision on an identical copy resting in a distance.

Figure 3.16.: Trajectories for two identical particles in a head on collision.

The collision occurs at about 3.8 seconds, the projectile comes to rest and the target
starts to continue on the projectiles path, as required for conservation of momentum
(�g 3.17).

Figure 3.17.: Momenta transfer for projectile particle and target particle.

Using spheres without normal dissipation shows that energy in the system is conserved
(�g 3.18).
If one particle leaves the designated simulation area, the program returns an area.
This is done to conserve the particle number in the simulation.
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Figure 3.18.: Evolution of the total amount of kinetic energy in the two particle sys-
tem.

A sphere rolling on a horizontal plate with an initial translational velocity will grad-
ually lose its kinetic energy and eventually stop travelling due to friction from inter-
action with the plate. This is used as a simple test for the implementation of rolling
friction. Initially the sphere is resting on the plate, and at time t = 0 starts to move
with a translational velocity of vx = 0.05m

s
but no angular velocity. The physical

properties used for this test are the same as in Table 3.1, with the exception of µr,
and the radius of the sphere is r = 0.0005m. Figure 3.19 shows the distance covered
by the sphere versus time.

Figure 3.19.: Travelled distance of a 0.5 mm sphere moving on a horizontal plane with
di�erent rolling friction coe�cients µr.

If no rolling friction is applied, no resistance is available to stop the rolling of the
sphere, allowing it to move inde�nitely, which is shown by the linear increase of the
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travelled distance with time. Once rolling friction is introduced into the system,
a friction torque arises, counteracting the rotational motion of the particle, thus
stopping its motion after a �nite time. As expected, the distance varies with µr, with
higher coe�cients halting the particle earlier.
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3.5.3. Preparation of the samples

For the simulations, nine di�erent samples are created and used in all con�gurations
of the simulation. To create these samples, n particles with a random radius from
an equal distribution between rmin and rmax (�g 3.20) according to table 3.2 are
distributed on an (lx,ly)-lattice in one or more layers.

Figure 3.20.: Distribution of radii in one of the samples. The radius range is divided
in 250 bins of length 1e−6m.

These particles are attributed a random velocity in x- and y- direction from an equal
distribution between vmin and vmax. The particles then are placed inside the simulation
box and move according to their velocities for 10 seconds. After that all linear and
rotational velocities and accelerations are set to zero. The resulting positions are used
as initial values for the actual simulation runs. Figure 3.21 shows an example of a
system before the particle positions are distributed according to their velocities (�g
3.21a), and after (�g 3.21b).

Table 3.2.: ranges of particle radii and velocities
minimum maximum

radius [m] 0.00025 0.0005
velocity vx, vy[m/s] -0.005 0.005

The box used in the simulations has a length of 0.4m, a width of 0.02m, and its height
is limited to 0.1m. In the y-direction, the box is limited by walls on both sides, in
the x-direction periodic boundaries connect both sides of the box. The z-direction is
limited by a wall on the ground, but open in positive direction.
The following simulations consist of n = 4000 particles. The di�erent con�gurations
are generated with the same limits, but di�erent seeds for the randomisation. In each
simulation the same initial con�guration is used, i.e. �gure 3.27a uses the same initial
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(a) Close-up of the particle positions before distributing, showing two layers in a grid
structure.

(b) Close-up of the particle positions after distributing, showing an isotropic arrange-
ment.

Figure 3.21.: Comparison of samples before and after distributing the particle posi-
tions.

con�guration as �gure 3.29a. The particle properties given in table 3.3 are constant
for all simulations, except for the one speci�ed parameter that is deactivated in the
respective simulation. The properties are chosen to approximate glass beads [69, 2].
To allow faster computation the Youngs modulus is reduced. Compared with the
experiment, the biggest discrepancy is the form of the particles. In the experiment,
the grains are of irregular form, in the simulation the particles are perfect spheres.
Global values are given in table 3.4. They are kept constant through all simulations
unless stated otherwise.
All map-plots in the following part show the evolution of the one-dimensional density
pro�le over the length of the box, calculated according to the method described in
appendix A. The colour of the �gures displays the density fraction, the horizontal
axis the length of the box, and the vertical axis the simulation time. Snapshots of
the systems are taken every full period of the shaking motion at every second turning
point.
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Table 3.3.: physical properties of particles and walls
mean radius density Youngs' modulus dissipation

symbol [unit] R [m] ρ [kg/m3] Y [kg/ms2] A [s]
value 0.000375 2500 106 8.5 · 10−6

friction rolling friction tangential damping -
symbol [unit] µpp/pw [1] µr [s] γt [Nsec/m] -

value 0.7 8.5 · 10−6 0.007 -

Table 3.4.: global simulation parameters
shaking frequency shaking Amplitude -

symbol [unit] ν [1/s] A [m] -
value 20 0.025 -

gravity timestep print step
symbol [unit] g [m/s2] ∆t [s] nprint [1]

value −10 ‖ ez 8 · 10−6 39270

3.5.4. Results

After the initialisation described in section 3.5.3, all particles are placed in one layer
inside the simulation box, which is then shaken with an amplitude of 2.5 cm and a
frequency of 20Hz for 20 seconds. The samples end in state (�g 3.22), similar to the
state observed in the experiment (�g 2.11).

Figure 3.22.: Top-down view of the whole system of sample 1 after 20 seconds.

Figure 3.22 clearly shows the separation of the initial isotropic distribution into dis-
tinct bands of particles. The stripes show a dense front in direction of the current
thrust from the system, and a gas-like tail following them. Within one stripe, particles
are observed to jump and to roll upon each other (�g 3.23b).
Analysing the density pro�les of the samples (�g 3.27) shows that stripe formation
occurs spontaneously after 3-5 seconds, depending on the initial distribution of par-
ticles in the sample. As the di�erent realisations show, the initial distribution has
huge in�uence on number, position, size and orientation of the stripes, as well as their
stability. Furthermore it can be seen, that even after the formation of the stripes,
minor, short-lived stripes can arise from the gas-like medium between the stripes and
either dissolve again into the medium or merge with the major stripes (e.g. 3.27c),
possibly in�uenced by particle size. The number of stripes in all con�gurations in
the last phase of the simulation is manually counted, based on a density threshold
of 0.03/m. The average number of stripes after 20 seconds in a 0.4m long system is
found to be 4± 0.875.
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(a) Close-up view of one stripe of 3.22, top-down, focused on x = 0.185m, showing the increased
packing fraction within the stripe and the gas-like tail with decreasing packing fraction.

(b) Close-up view of 3.23a, from the side.

Figure 3.23.: Close-up view of sample 1, focused on the stripe at x = 0.2m, after 20
seconds.

The trajectory of a single particle (particle 0 in system 3.27a) in the x-y-plane shows
a irregular motion (3.24a). The particle starts its way at the blue cross mark. and in
the beginning follows a regular oscillating path, with some light motion perpendicular
to the shaking direction resulting from an early collision. The particle then deviates
from this path, and, with higher velocity starts to move through the system. At some
time its trajectory appears to be con�ned in the range of x = [0.19 : 0.23]m and
y = [0.011 : 0.02]m and shows signs of con�nement in x = [0.24 : 0.28]m in the same
range of y. Both con�nement areas correspond to stripes in the density pro�le.During
the course of the simulation the particle explores the whole width of the box, though
mainly stays in the upper half (�g 3.24a). The irregularity of motion shows itself in
the particles phase space trajectory as well (�g 3.24b).
Larger particles colliding with smaller ones may be thrown into the air and follow a
ballistic trajectory until they touch ground again. This happens at higher frequency
in stripes, as the particle density is much higher there (�g 3.25).
The distribution of particle radii in the stripes during the last phase of the simulation
shows an uniform distribution (�g 3.26) akin to the initial distribution of particles.
The average radius in the stripes is Ravg ≈ 0.0003760m. Compared to the whole
system, this is a change of about 2.532 per cent, suggesting that size segregation
plays no role in stripe formation.
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(a) Trajectory (b) Phase space

Figure 3.24.: Motion of a tracer particle within the system and the phase space tra-
jectory of said tracer particle, limited to the x-coordinate of the system.

Figure 3.25.: O�-plane motion of the tracer particle. The radius of the particle is
about 0.00026m.
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Figure 3.26.: Distribution of particle radii in the stripes at the end of the simulation
in sample one. The other samples look identical, except for �uctuations
and have been omitted for clarity.
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In�uence of the friction

The simulation is repeated with the Coulomb coe�cient of friction for particle-particle
interaction set to zero, µpp = 0. This makes particle-particle interaction smooth and
prevents jamming of particles. All other parameters kept constant.
The density pro�le of the system (�g 3.29) immediately shows, that no stripe for-
mation occurs, unlike in the reference case (�g 3.27). Instead the initial distribution
remains for the most part, shifted slightly into the direction of the initial thrust of
shaking, and then remaining stationary. The x-y-trajectory of the tracer particle (�g
3.28a) con�rms, that with some weak interactions in ±y-direction, the particle essen-
tially follows a periodic trajectory. The phase space trajectory of the tracer particle
(�g: 3.28b) shows high similarity to the phase space motion of the single particle in
3.10a, suggesting the systems behaves largely like a collection of independent spheres.

(a) Trajectory (b) Phase space

Figure 3.28.: Trajectory and phase space motion of the tracer particle. The Phase
space is limited to the x-coordinate of the system.
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In�uence of shaking amplitude and frequency

The initial simulation is repeated for a larger range of forcing parameters ν and A.
Each combination of (ν,A) in �gure 3.30 represents the evolution of the density during
the �rst 15 seconds of the simulation. This duration is chosen, to allow evolution
for the majority of the systems, and to be fast enough to process a multitude of
con�gurations. Three major distinct regions can be identi�ed (�g 3.31):

(a) Nothing happens in the low frequency - low amplitude corner,

(b) Stripes emerge from the medium frequency - medium amplitude to the upper low
frequency - high amplitude corner,

(c) The system becomes gas-like in the high frequency - high amplitude corner corner

Clear stripe formation can be seen at intermediate driving frequencies and high driv-
ing amplitudes, where stripes are stable during the entire simulation and no �uctua-
tions appear3.
Between these three dominant regions, minor regions appear, that can not be clearly
attributed to one of the big regions. These are

(1) A region with proto stripes between (a) and (b), likely to form clear stripes at a
later point in time,

(2) Very weak and dilute stripes between (b) and (c) (top), being subject to too much
agitation,

(3) Some sort of pseudo structures between (b) and (c) (bottom)

Figure 3.31 gives an abstract overview over the regions and their position in phase
space. Regions (1)-(3) might be phase transitions between (a),(b), and (c), instead of
being actual regions themselves. Especially the clear transition between (17, 0.035)
and (20, 0.035).

3A good example of this is the con�guration (14, 0.035)
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Figure 3.31.: Abstract representation of �gure 3.30 to emphasise the di�erent regions
in phase space.

In�uence of particle jumping

In these simulations the particles are con�ned to the ground. This is done by testing
each particle i if it su�ces the condition

z = min (Ri, z). (3.28)

While this violates Newtonian physics, it only serves as a test on jumping. The other
parameters are kept the same as in the reference simulations.
As seen in the density pro�les (�g 3.32), the system still forms stripes. Indeed, the
mechanism of ballistic �ight, that Strassburger et al. used in their cellular automaton
3.1 is not required for stripe formation. Opposed to the full model with particle
jumping, this system takes longer to cluster, stripes occur after about 6-9 seconds.
The stripes are generally smaller, but of higher density and show more short lived
stripes appearing and disappearing during the simulation. The average number of
stripes at the end of the simulation is 4± 1, based on a density threshold of 0.004/m.
In the beginning, until about 5 seconds, the tracer particle moves with weak interac-
tion in tangential direction, similar to the case of the frictionless particles (�g 3.33).
The next seconds are spent in-between the stripes After about 16 seconds, the particle
joins the newly emerging stripe at x ≈ 0.16m and stays with it until the end of the
simulation.
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Figure 3.33.: Motion of a tracer particle in a two dimensional system.

In�uence of the dissipation

In these simulations, the normal dissipation between particles is set to zero, App = 0,
i.e. the particle collisions now follow the classical Hertz law

F n
el =

2Y
√
Re�

3(1− ν2)
ξ3/2. (3.29)

The other parameters are kept the same as in the reference simulations.
Stripe formation sets in earlier than with normal dissipation, after about 2-4 seconds
(�g 3.34). The stripes are larger, but less dense than in the damped case. The systems
show, that the stripes undergo both merging and branching, i.e. one stripe splitting
into two, more frequently than before. During a collision particles will not lose energy
and thus separate with their initial velocities. However one of the particles always
has to move against the shaking motion of the box, and consequently is stopped
and turned back, remaining in close proximity to its former collision partner. The
distance between the particles after the collision is larger than in the damped reference
case. Consequently the stripes are broader and less dense. Over time, particles then
accumulate with decreasing distances, until they jam and start sliding on the �oor.
The average number of stripes at the end of the simulation is 4±1, based on a density
threshold of 0.003/m.
The tracer particle (�g 3.35) is absorbed by the stripe at x ≈ 0.1m early in the
simulation and stays within the stripe for most of the time. After about 12 seconds
the particle brie�y moves into the emerging stripe on the left side of the stripe before
rejoining the original one.
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Figure 3.35.: Motion of a tracer particle in a dissipationless system.

In�uence of the walls

Additional periodic boundaries in the y-direction are introduced. The simulations
are then repeated.
Stripe formation occurs after about 4-6 seconds (�g 3.37), slightly later than in the
reference case. More stripes form than in the initial case, but the stripes are smaller.
More short lived stripes appear and disappear. It can be concluded, that walls are
not critical for stripe formation. The additional damping caused by the particle-wall
friction accelerates stripe formation, but it is not necessary for their formation.
The average number of stripes is 5± 1, based on a density threshold of 0.003 1/m.

Figure 3.36.: Motion of the tracer particle in a wall-less system.
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Comparison of the di�erent systems

The x- and y- components of the position of the tracer particle are shown in �gure
3.38a and 3.38b, respectively.

(a) x-trajectory

(b) y-trajectory

Figure 3.38.: x- and y-positions of the tracer particles.

In all systems but the frictionless one, the motion of the particle shows similar highly
irregular behaviour with especially strong �uctuations in y. The tracer particle in the
frictionless system shows the same behaviour as a single particle in the system with
respect to its x-coordinate, and weak interaction in its y-coordinate, slowly �uctuation
around its starting value.
For all samples of each system the mean square displacement, D, is calculated via
the relation [90],

D =
1

2
r2i (3.30)
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where ri is the displacement of particle i between two successive periods,

ri = |rj − rj+1| (3.31)

and the average is taken over all particles in the sample. The displacement then
is averaged over all samples of one simulation con�guration. Figure 3.39 shows the
averaged mean square displacement for the di�erent simulations.

Figure 3.39.: Evolution of the mean square displacement for the di�erent kinds of
con�gurations.

During the �rst seconds, the value of D remains roughly constant for all systems.
For each particular system, the best �t to the curve D(t) is performed using the
function D(t) = a1 within the range [0,t]. the �rst and second column of Table
3.5 show the respective values of a1 and t corresponding to each system. It can
be seen, that a1 is approximately the same in all cases, and has the average value
a1 ≈ (1.618e−4 ± 1.543e−5)m2.

Table 3.5.: a1 (second column) and a2 (fourth column) are the values of D obtained
from the best �t to the simulation data using D = a1,2 constant within
the corresponding ranges of values of t (displayed in columns 1 and 3,
respectively)

system t-interval [s] a1[m2] t-interval [s] a2[m2]
regular [0 : 2] 1.832e−4 ± 1.369e−5 [4 : 20] 9.401e−4 ± 1.236e−5

2D [0 : 5] 1.419e−4 ± 4.385e−6 [8 : 20] 8.175e−4 ± 1.982e−5

frictionless [0 : 2.5] 1.612e−4 ± 1.086e−5 [8 : 20] 4.248e−5 ± 2.093e−6

periodic y [0 : 4] 1.543e−4 ± 8.655e−6 [5 : 20] 8.652e−4 ± 1.056e−5

dissipation [0 : 2.5] 1.685e−4 ± 9.540e−6 [4 : 20] 9.387e−4 ± 9.079e−6

For all systems, but for the one where particle interaction occurs without frictional
forces the value of D starts to increase after a certain amount of time, thereafter
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approaching a constant value, a2. By performing the best �t using the ansatz D(t) =
a2 within a range of su�ciently large values of time, it is found that a2 ≈ (8.904e−4±
5.987e−5)m2 (column three and four of Table 3.5). Indeed, the time at which the
value D ≈ a2 is reached essentially equals the instant where stripes in the system
begin to form. The �uctuations in the value of D around the constant value a2 are
associated with particle displacement between two stripes. These �uctuations suggest
a correspondence with a gas-like state associated with particle motion in-between the
stripes, where particles enter (leave) this state upon leaving (being incorporated to)
a stripe.
Figure 3.40 shows, that the value of a2 depends on the particle's radius; the smaller
the particle, the larger the value of a2.

Figure 3.40.: Mean square displacement D as a function of time, for di�erent values of
particle radius, R. The evaluation is done exemplarily for the reference
simulation, the other simulations follow the same pattern.
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In�uence of the packing fraction

To observe the in�uence of the packing fraction, the system is �lled with di�erent
numbers of particles, while the size of the box remains constant. This leads to two-
dimensional packing fractions of about 0.06, 0.12, 0.24, and 0.48, which again was
determined as a two-dimensional packing fraction ρ = Nr2π

lx·ly . For each packing fraction
one sample was created.

Table 3.6.: Number of particles per packing fraction
no. of particles 1000 2000 4000 8000

ρ [1/m2] 0.05807 0.1144 0.2297 0.4583

Packing fraction shows to hold a strong in�uence in stripe formation (�g 3.41), if the
fraction is too low, particles have little chance to come into contact within reasonable
time and thus can not form stripes. The system at low fractions, �gure 3.41a, shows
the behaviour of an ensemble of independent particles as shown in �gure 3.10a. With
increasing packing fraction particles become correlated and start deviating from the
single particle trajectories, see �gure 3.41b, and show traces of clustering towards the
end of the observation window. Further increasing the fraction creates distinct stripes
in the system, �gure 3.41c, with traces of merging and branching4 and then formation
of massive structures with increased branching and merging of smaller stripes in the
system 3.41d. The onset of structure formation happens much earlier, after a few
oscillations cycles.

4also compare 3.27

67



(a
)
p
a
ck
in
g
fr
a
ct
io
n
=

0
.0
5
8
0
7

(b
)
p
a
ck
in
g
fr
a
ct
io
n
=

0
.1
1
4
4

(c
)
p
a
ck
in
g
fr
a
ct
io
n
=

0
.2
2
9
7

(d
)
p
a
ck
in
g
fr
a
ct
io
n
=

0
.4
5
8
3

F
ig
ur
e
3.
41
.:
E
vo
lu
ti
on

fo
r
sy
st
em

s
w
it
h
di
�
er
en
t
pa
ck
in
g
fr
ac
ti
on
.

68



For each packing fraction, the mean square displacement is calculated.

Figure 3.42.: Evolution of the mean square displacement for di�erent packing frac-
tions.

The huge spikes between 6 and 11 seconds in the ρ = 0.2 1/m2-system correspond to
breaking apart of a stripe and emerging of new stripe in the range x = [0.14, 0.2]m
(�gure 3.41c). In contrast, merging and branching in 3.41d does not seem to have any
impact on the di�usion coe�cient. For ρ = 0.23m2 and ρ = 0.46m2 the mean square
displacement D takes a similar niveau quite fast, and towards the end (t ≥ 18s) the
system ρ = 0.11m2 seems to join this niveau. Combined with the previous results,
this may indicate that for stripe forming systems, the di�usion coe�cient assumes
the same niveau, independent of external in�uences and packing fraction, except too
dilute or dense systems.
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3.5.5. Long term behaviour

To analyse the long term behaviour of the shaken monolayer, the initial setup is run
for 2500 seconds. Its packing fraction is ρ = 0.2299, and the driving parameters are
A = 0.025m and ν = 20Hz.

(a) System after 0 seconds

(b) System after 500 seconds

(c) System after 1000 seconds

(d) System after 1500 seconds

(e) System after 2000 seconds

(f) System after 2500 seconds

Figure 3.43.: Evolution of the system over 2500 seconds.

Analysing the density pro�le, it immediately becomes clear that the patterns are not
stable, instead they break up after some time. There is always at least one major
stripe in the system, accompanied by several minor clusters. The overall pattern
appears to be self-similar with respect to time.
The motion of the tracer particle is recorded for the �rst 400 seconds (�g 3.44).

Figure 3.44.: Motion of the tracer particle in the �rst 400 seconds of the simulation.
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The mean square displacement D, after the initial formation of the stripes, shows an
undulating pro�le with two levels (�g 3.46).

Figure 3.46.: Longterm evolution of the mean square displacement.

The autocorrelation function

C(t) =
N−1∑
t′=0

D(t)D(t+ t′), (3.32)

of the mean square displacement D alone shows no features, but the density pro�le
suggest the existence of a maximum around t = 100 s (�g 3.47), corresponding with
the mean lifetime of the stripes.
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(a)

(b)

Figure 3.47.: Autocorrelation of the mean square displacement D.

73



74



4. Negative coe�cient of normal

restitution
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Recently, negative values for the coe�cient of normal restitution have been observed
for oblique impacts of nanoparticles [52]. While colliding nanoparticles represent a
highly speci�c system including e.g. adhesive forces or restructuring, we show that
negative coe�cients of normal restitution are an absolutely general phenomenon aris-
ing from plain geometry. Negative coe�cients of normal restitution may be observed
for all kinds of collisions which are governed by �nite interaction forces. Whereas
negative coe�cients of normal restitution may appear quite arti�cial, they reveal a
commonly neglected de�ciency of the widely used hard sphere model.
This chapter was written in collaboration with Patric Müller and Thorsten Pöschel.

4.1. Introduction

Both, Kinetic Theory of granular matter, based on the Boltzmann equation [34, 66,
86], as well as highly e�cient event-driven Molecular Dynamics (eMD) simulation of
granular matter [8, 16, 87] are based on the hard sphere model (HSM) of particle
collisions. Hard sphere collisions are characterized by delta-shaped interaction forces.
While the particles instantaneously exchange momentum during a collision, their po-
sitions hence remain unchanged. Due to the instantaneous character of the collisions,
the dynamics of a hard sphere system is represented by a sequence of binary colli-
sions (events), which is the idea of eMD. As only momentum is transferred during
a collision, each event is characterized by only two scalar values: The coe�cient of
normal restitution εn relating post- and precollisional normal part of the particles rel-
ative velocity and the coe�cient of tangential restitution relating the corresponding
tangential components. For two hard spheres i and j located at ri and rj travelling
at velocities ṙi and ṙj, the coe�cient of normal restitution for hard spheres is, thus,
de�ned by (

ṙ′i − ṙ′j
)
· ê 0

r = −εHS
n

(
ṙ0i − ṙ0j

)
· ê0r , (4.1)

where X0 indicates the value of the quantity X at the moment of impact and X ′

the corresponding value at the instant of time τ , where the collision terminates.
êr ≡ (rj − ri)/ |rj − ri| denotes the unit vector pointing from particle i to particle j.
Note, that due to the instantaneous character of hard sphere collisions, the normal
vector êr remains unchanged during a collision (ê′r ≡ ê0r, ê

0
r on both sides of Eq. (4.1)).

For soft sphere collisions characterized by �nite interaction forces and �nite contact
durations this may be invalid: Oblique impacts may lead to a reorientation of the
normal vector (ê′r 6= ê0r). For soft spheres the coe�cient of normal restitution is hence
given by (

ṙ′i − ṙ′j
)
· ê ′r = −εn

(
ṙ0i − ṙ0j

)
· ê0r . (4.2)

Disregarding some current approaches [76], the reorientation angle

ϕ′ ≡ cos−1(ê0r · ê′r) (4.3)

is not available in classical eMD algorithms. It is commonly assumed to be negligible
and the de�nition Eq. (4.1) is used without further consideration.
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In textbooks, the coe�cient of normal restitution εHS
n as de�ned in Eq. (4.1) is as-

sumed to be a material constant attaining values ranging from zero to unity (εHS
n ∈

[0; 1]). Opposing this, it has been shown long time ago that the coe�cient of normal
restitution εHS

n may be a function of the impact velocity [13]. While more recent
studies demonstrate that the coe�cient of normal restitution may be a a �uctuating
quantity [55] even exceeding unity [60, 32], it was still believed to not fall below zero.
For oblique impacts of nanoclusters it was recently shown that the reorientation
Eq. (4.3) may lead to negative values for the coe�cient of normal restitution de�ned
by Eq. (4.1) [52]. This surprising e�ect was attributed to the softness of nanoclusters
leading to relatively long contact durations τ , which, in turn, may lead to a signi�cant
reorientation of the particles normal vector during a collision.
In this work we show that negative coe�cients of normal restitution are not restricted
to high speed impacts of nanoclusters. Quite the opposite, they are an absolutely
general phenomenon which may appear for all collisions whose dynamics are governed
by �nite interaction forces leading to �nite durations of contact. Provided �nite

contact duration, we show that the origin of the e�ect is plain geometry. Independent
of material properties we always �nd a collision geometry leading to negative values
of εHS

n . To provide evidence for our �ndings we exemplarily discuss two speci�c
interaction forces for spherical particles: The linear dashpot model and viscoelastic
spheres. Additionally we address the in�uence of friction.

4.2. Collision of Smooth Spheres

For the collision of two smooth spheres with the masses mi and mj located at ri and
rj it's reasonable to switch to center of mass and relative coordinates. The relative
motion seperates from the center of mass motion and contains the entire collision
details:

me�r̈ = F , (4.4)

with the relative coordinate r ≡ rj−ri and the e�ective massme� ≡ mimj/(mi+mj).
As described in [75], the interaction force F exclusively acts in the direction of the
inter-center unit vector for frictionless collisions: F = Fnêr. This implies that the
particles rotation is not a�ected and (orbital) angular momentum is conserved during
the collision. The complete collision hence takes place in a plane perpendicular to
the conserved angular momentum L

L = me� r× ṙ ≡ LêL . (4.5)

In this collision plane we rewrite the equation of motion Eq. (4.4) in polar coordinates
{r, ϕ} (see Fig. 4.1):

me�r
2ϕ̇ = L (4.6a)

me�r̈ = Fc + Fn = me�rϕ̇
2 + Fn , (4.6b)
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with the centrifugal force Fc. Together with the inital conditions

r(0) = r0 , ṙ(0) = ṙ0 , ϕ(0) = 0 , (4.7)

Eq. (4.6) fully describes the collision dynamics for an arbitrary normal force Fn. The
collision terminates at time t = τ where [88, 89]

ṙ(τ) > 0 and Fn = 0. (4.8)

ýå2

Figure 4.1.: Illustration of the used polar coordinates (see text)

4.3. Negative Values for the Coe�cient of Normal

Restitution

Expressed in the polar coordinates described in Sec. 4.2 the relative vector r and the
corresponding relative velocity ṙ are given by

r = rêr and ṙ = ṙêr + rϕ̇êϕ respectively, (4.9)

where

êr =

 cosϕ
sinϕ

0

 and êϕ =

 − sinϕ
cosϕ

0

 . (4.10)

With this the coe�cient of normal restitution according to the hard sphere de�nition
Eq. (4.1) reads

εHS
n = − ṙ

′

ṙ0︸︷︷︸
>0

cosϕ′ +
r′ϕ̇′

ṙ0︸︷︷︸
≤0

sinϕ′ (4.11)

using polar coordinates.
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As at the beginning of a collision the particles are approaching and seperating at the
end of the collision, the factor for the cosine term needs to be positive. By de�nition
the angular velocity is positive at the end of the collision as well as the distance
between both particles. As the particles are approaching at the beginning of the
collision, we have ṙ0 < 0 and the factor for the sine-term is always negative. This
implies that negative values for εHS

n are possible exclusively for �nite reorientations
ϕ′.
For any �nite interaction force, the contact duration τ is �nite. In this case Eq. (4.6a)
indicates that �nite rotation angles are unavoidable for non-zero (orbital) angular
momentum L. Which, according to Eq. (4.5), is ful�lled as soon a r and ṙ are not
parallel. This implies, that negative values for the coe�cient of normal restitution
have to be expected for any eccentric collision governed by �nite interaction forces.

Figure 4.2.: Eccentric binary collision of spheres.

As described in Sec. 4.2 the collision of two frictionless spheres always takes place in
a plane. It's hence possible to �x the collision scenario shown in Fig. 4.2 without loss
of generality, which allows for a more vivid description of the impact eccentricity

e ≡ d

l
. (4.12)

From the de�nition of the angular momentum L (Eq. (4.5)) and geometry, we �nd

L = me� dv and ṙ0 = −v
√

1− e2 (4.13)

for the collision setup shown in Fig. 4.2. As L is conserved Eq. (4.6a) yields

rϕ̇ =
d v

r
(4.14)

and the factor of the sine-term in Eq. (4.11) thus reads

r′ϕ̇′

ṙ0
= − d

r′
√

1− e2
. (4.15)

For elastic particles we have r = r′ = l and, of course, εn = 1 (see Eq. (4.2)) which
implies ṙ0 = −ṙ′. With this, Eq. (4.11) facilitates to

εHS
n = cosϕ′ − 1√

(1/e)2 − 1
sinϕ′ . (4.16)
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Fig. 4.3 shows εHS
n for elastic particles as a function of the reorientation angle ϕ′

(Eq. (4.3)).
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Figure 4.3.: Coe�cient of normal restitution εHS
n (hard sphere de�nition, Eq. (4.1))

of elastic particles as a function of the reorientation angle ϕ′ for various
impact eccentricities e ≡ d/l (see Eq. (4.16)). Labels: Impact eccentricity
e.

If the hard sphere de�nition Eq. (4.1) for the coe�cient of normal restitution is applied
to oblique collisions of soft spheres characterized by �nite interaction forces and, as
a consequence, �nite contact durations, Fig. 4.3 reveals two e�ects:

1. εHS
n is not a constant. Even for elastic particles. Besides material properties
and impact velocity, it depends on the impact eccentricity and hence on the
collision geometry.

2. Depending on the impact eccentricity, εHS
n may attain negative values for any

reorientation angle ϕ′.

Fig. 4.3 indicates that for a �xed impact eccentricity the value of εHS
n and especially its

sign, are governed by the reorientation angle ϕ′. This raises the following question:
Given an speci�c interaction force model governed by a set of parameters as well
as impact velocity and eccentricity, what reorientation angle is to be expected? To
answer this question we refer to Fig. 4.4. The curves shown there are exemplary. They
have been obtained for a special force model and a special set of system parameters.
Note that in spite of that the following discussion and concepts hold true for any
�nite interaction force.
Two contacting spheres form dumbbell-shaped body. As soon as the impact is ec-
centric (e > 0), this dumbbell starts rotating around its center of mass with an
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angular velocity ϕ̇ corresponding to the conserved angular momentum L. The angu-
lar momentum increases linearly with the impact eccentricity e (dashed line in the
intermediate panel of Fig. 4.4). According to Eq. (4.6a) this implies that ϕ̇ is also
growing with the impact eccentricity. Eq. (4.14) yields

ϕ̇ =
dv

r2
. (4.17)

If we assume small deformations, r ≈ l, we have

ϕ̇ = const. ≡ ω = e
v

l
. (4.18)

This angular velocity, in turn, serves for �nite reorientation angles ϕ′ if only the
contact duration is �nite, which of course, holds for all �nite interaction forces. For
typical normal force models the contact duration is independent of the normal com-
ponent of the impact velocity |ṙ0| (linear dashpot model Sec. 4.4.1 ) or a decreasing
function of |ṙ0| (viscoelastic spheres Sec. 4.4.2). As |ṙ0| is a decreasing function of the
impact eccentricity e (Eq. (4.13), top panel in Fig. 4.4, solid line), the contact dura-
tion is a decreasing function of the impact eccentricity (top panel in Fig. 4.4, dashed
line)). Additionally, the rotation velocity is growing with the impact eccentricity.
This serves for larger, e�ectively repulsive, centrifugal forces shortening the contact
duration furthermore. Hence even for the linear dashpot model, the contact duration
τ (see Eq. (4.8)) decreases with growing eccentricity. The resulting reorientation an-
gle ϕ′ as a function of the impact eccentricity is shown in the intermediate panel of
Fig. 4.4. For 0 < e / 0.8 the increasing rotation velocity dominates, making ϕ′ an
increasing function of e. For 0.8 / e < 1, ϕ′ decreases because the decrease of the
contact duration becomes governing. According to Fig. 4.3, εHS

n is a monotonically
decreasing function of ϕ′ for reasonably small ϕ′. At �rst glance, εHS

n (e) should hence
be decreasing for 0 < e / 0.8 and increasing for 0.8 / e < 1 respectively. But as
also shown in Fig. 4.3 the slope of εHS

n becomes more and more negative for growing
impact eccentricities e, which, in turn, overcompensates the decreasing reorientation
angle for 0.8 / e < 1. As a result, εHS

n is a monotonically decreasing function of the
impact eccentricity e (Fig. 4.3, lower panel, solid line). Even for completely elastic
particles (εn = const. = 1, Fig. 4.3, lower panel, dashed line).
As a consequence of Eq. (4.8) the contact duration decreases with inelasticity. That is
the reorientation angle decreases and hence the di�erence between εn and εHS

n (e) also
reduces. The slope εHS

n (e) is thus reduced when compared to the corresponding un-
damped curve. For central impacts (ϕ′ = 0) the hard sphere de�nition of the normal
coe�cient of restitution Eq. (4.1) degenerates to its general de�nition Eq. (4.2):

εHS
n = − ṙ

′

ṙ0
, (4.19)

wich, of course, is smaller than unity for inelastic collisions and decreases with growing
inelasticity. That is, the εHS

n (e)-curves for very inelastic systems always lie below the
corresponding ones for lower inelasticty. As these curves additionaly have di�erent

81



10

8

6

4

2

0
- 

. r0
  
[m

/s
]

0

5

10

15

20

25

30

ϕ
´ 

[d
eg

.]

0 0.2 0.4 0.6 0.8 1
e

-0.5

0

0.5

1

ε
n

0.005

0.01

0.015

0.02

τ
 [

s]

τ

- 
.
r
0

ϕ´ 

a)

hs, elastic

true, elastic

τ elastic

true
hs

b)

c)

Figure 4.4.: Abscissa of all panels: Impact eccentricity e ≡ d/l. a) Left ordinate:
Normal component ṙ0 of the relative velocity of the two colliding spheres
at the instant of impact. Right ordinate: Contact duration τ b) Left
ordinate: Rotation ϕ′ of the normal vector êr at the end of the colli-
sion. c) Coe�cient of Normal Restitution εn. Solid line: Hard sphere
de�nition Eq. (4.1). Dashed line: Ratio of post- and precollisional nor-
mal component of the particles relative velocity Eq. (4.2). Normal force
model: Linear Dashpot (see Sec. 4.4.1). Parameters: k = 1.5e05 N/m,
R = 0.1 m, ρ = 1140.0 kg/m3, v = 10.0 m/s, γ = 0.0 kg/s (elastic parti-
cles), γ = 1000.0 kg/s (lower/upper panel)

slopes they may eventually intersect for some impact eccentricity e (Fig. 4.3, lower
panel).

Summing up we have: Two colliding particles form a dumbbell-shaped object. For
oblique impacts this dumbbell rotates as long as the particles are in contact. As
the contact duration is �nite for all �nite interaction forces, we have �nite rotation
angles for all eccentric impacts governed by �nite interaction forces. Assuming small
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deformations, the value of the reorientation angle ϕ′ is determined by the ratio µ of
the contact duration τ and the time Trot = 2π/ω the dumbbell would need for a full
rotation:

µ ≡ τω

2π
, ϕ′ = µ 2π . (4.20)

In turn, the coe�cient of normal restitution according to the hard sphere de�nition
Eq. (4.1) varies with the reorientation angle and, thus, depends on the collision geom-
etry. Along these lines, even negative values for εHS

n are always possible: Independent
of the interaction force model and the system parameters we always �nd a critical
impact eccentricity from which on we have εHS

n < 0.
In the next section we illustrate our �ndings for two widely used interaction force
models. For booth models we present exhaustive parameter studies. These highlight
negative values εHS

n , or more general the geometry dependence of εHS
n , as a signi�cant,

far reaching e�ect.

4.4. Simulation Results

4.4.1. Linear Dashpot Model

Within the linear dashpot model, the normal component of the interaction force is
given by

Fn = k(l − r)− γṙ (4.21)

(see [49, 87]). Neglecting centrifugal forces (e = 0), for elastic collisions, γ = 0, the
contact duration τ reads

τ = 2π
√
me�/k. (4.22)

If we further assume small deformations (r ≈ l), according to Eq. (4.20) we have

µ = e
v

l

√
me�

k
(4.23)

and the reorientation angle is approximately given by

ϕ′ = µ 2π = 2π e
v

l

√
me�

k
. (4.24)

According to Fig. 4.3, εHS
n is a monotonically decreasing function of the reorientation

ϕ′ for �xed impact eccentricities and reasonable rotation angles ϕ′ ∈ [0◦, 90◦]. That is,
for elastic particles, the di�erence of εHS

n from εn = 1 increases with the reorientation
angle ϕ′. Together with the core statement of Sec. 4.3 that εHS

n is a decreasing function
of the impact eccentricity e, we now use Eq. (4.24) to discus Fig. 4.5 and Fig. 4.6.
The lower panel of Fig. 4.5 displays εHS

n (e) for various spring constants k for elastic
particles. As predicted by Eq. (4.24), the di�erence of εHS

n (e) from εn = 1 grows
with decreasing k. The upper panel shows εHS

n (e) for �xed k but various damping
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Figure 4.5.: Abscissa of both panels: Impact eccentricity e ≡ d/l. a) Ordinate: Coef-
�cient of normal restitution according to the hard sphere de�nition (solid
lines) and the ratio of post- and precollisional normal component of the
particles relative velocity (dashed lines) for various damping constants
γ. Labels: γ [kg/s]. b) Ordinate: Coe�cient of Normal Restitution εn
(hard sphere de�nition) for various spring constants k. Labels: k [N/m].
Normal force model: Linear Dashpot. Parameters: k = 1.5e05 N/m
(top panel), R = 0.1 m, ρ = 1140.0 kg/m3, v = 10.0 m/s, γ = 0.0 kg/s
(elastic particles, lower panel)

coe�cients γ. It exempli�es the in�uence of damping detailed in Sec. 4.3 (Fig. 4.4,
lower panel).
The same line of reasoning explains Fig. 4.6. According to Eq. (4.24), the reorientation
angle grows with the impact velocity. The εHS

n (e)-curves for higher impact velocity
hence attain smaller values than those for lower impact velocities (see Fig. 4.6, top
panel). As l = 2R, where R indicates the particle radius, the reorientation angle
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increases with growing l or R respectively, as well as with growing material densities
ρ (me� ∝ ρ). The εHS

n (e)-curves for higher R or ρ thus display smaller values than the
curves for the corresponding lower values (see Fig. 4.6, bottom/intermediate panel).
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Figure 4.6.: Abscissa of all panels: Impact eccentricity e ≡ d/l. Ordinate of all panels:
Coe�cient of Normal Restitution εn (hard sphere de�nition) a) εn(e)
for various impact velocities v. Labels: v [ m/s]. b) εn(e) for various
particle radii R. Labels: R [m]. c) εn(e) for various densities ρ. Labels:
ρ [103 kg/m3]. Normal force model: Linear Dashpot. Parameters:
k = 1.5e05 N/m, R = 0.1 m (bottom/top panel), ρ = 1140.0 kg/m3

(intermediate/top panel), v = 10.0 m/s (bottom/intermediate panel),
γ = 0.0 kg/s (elastic particles)
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4.4.2. Viscoelastic Spheres

This section is along the lines of Sec. 4.4.1. Only the normal force model is now
changed to the one of viscoelastic spheres [64]:

Fn = F el
n + F dis

n = ρel(l − r)3/2 −
3

2
Aρelṙ

√
l − r , (4.25)

where

ρel ≡
2Y
√
Re�

3(1− ν2)
(4.26)

and Y , ν and Re� denote the Young's modulus, the Poisson's ratio and the e�ective
radius Re� = RiRj/(Ri + Rj), respectively. The elastic part F el

n of this widely used
[31, 3, 49] collision model is given by the Hertz' contact force of two colliding elastic
spheres [30]. The dissipative part, F dis

n , was �rst motivated in [25] and then rigorously
derived in [64] and [92], where only the approach in [64] leads to an analytic expression
for the parameter A, being a function of the elastic and viscous material parameters.
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Figure 4.7.: Coe�cient of Normal Restitution εn (hard sphere de�nition) for various
materials. The inset shows a magni�cation of the main panel. Normal
force model: Viscoelastic spheres. Parameters: Material parameters
as indicated in Tab. 4.1. R = 0.1 m, v = 10.0 m/s, A = 0.0 s (elastic
particles)

Fig. 4.7 displays the coe�cient of normal restitution εHS
n according to its hard sphere

de�nition as a function of the impact eccentricity e for various real life materials.
Extending the statements of [52] it illustrates that negative values for εHS

n are not
restricted to high speed collision of nanoclusters including adhesive forces. The e�ect
is also signi�cant for common collisions of macroscopic particles consisting of common
materials.
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Disregarding centrifugal forces, the contact duration reads

τ = R

[√
2πρ(1− ν2)

] 2
5

Y
2
5 (−ṙ0)

1
5

(4.27)

for completely elastic collisions (A = 0) [89]. According to Eq. (4.20), again assuming
small deformations (r ≈ l) and additionally using Eq. (4.13) we �nd

ϕ′ =
π

2
5

2
4
5

e(√
1− e2

) 1
5

v
4
5

[
ρ (1− ν2)

Y

] 2
5

. (4.28)

Just like in Sec. 4.4.1 we now use Eq. (4.28) to discuss the simulation results Fig. 4.8
and Fig. 4.9. According to Sec. 4.3 the coe�cient of normal restitution εHS

n (hard
sphere de�nition), is a monotonically decreasing function of the impact eccentricity
e. According to Fig. 4.3, the εHS

n -curves for parameters leading to large reorientation
angles ϕ′ always attain smaller values than these for parameters leading to smaller
ϕ′, for reasonably small reorientation angles. With this in mind, Eq. (4.28) easily
explains the top panel of Fig. 4.8 and all panels of Fig. 4.9. Note that for common
materials, the Poisson's ratio ν is of minor importance. It only becomes in�uencing
for highly auxetic materials (ν ≈ −1, top panel of Fig. 4.9).
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Figure 4.8.: Abscissa of all panels: Impact eccentricity e ≡ d/l. Ordinate of all
panels: Coe�cient of Normal Restitution εn (hard sphere de�nition) a)
εn(e) for various impact velocities v. Labels: v[ m/s]. b) εn(e) for various
particle radii R. Labels: R [m]. c) εn(e) for various dissipative constants
A. Labels: A [10−3 s]. Normal force model: Viscoelastic spheres.
Parameters: Material: Soft silicon rubber (see Tab. 4.1). R = 0.1 m
(bottom/top panel), v = 10.0 m/s (bottom/intermediate panel), A =
0.0 s (top panel,elastic particles), A = 1.0 · 10−4 s (intermediate panel)

88



-1

-0.5

0

0.5

1
ε
n

H
S

-1

-0.5

0

0.5

1

ε
n

H
S

0 0.2 0.4 0.6 0.8 1
e

-1

-0.5

0

0.5

1

ε
n

H
S

10

0.5

10.1
0.01

0.25

0 0.5

-0.9 -0.99

2.5 15

a)

b)

c)

Figure 4.9.: Abscissa of all panels: Impact eccentricity e ≡ d/l. Ordinate of all panels:
Coe�cient of Normal Restitution εn (hard sphere de�nition) a) εn(e) for
various Poisson's ratios ν. Labels: ν. b) εn(e) for various densities ρ.
Labels: ρ [103 kg/m3]. c) εn(e) for various Young's modulus Y . Labels:
Y [GPa]. Normal force model: Viscoelastic spheres. Parameters:
R = 0.1 m, Y = 0.01 GPa (intermediate/top panel), ρ = 2.0e3 kg/m3

(bottom/top panel), ν = 0.5 (bottom/intermediate panel) v = 10.0 m/s,
A = 0.0 s (elastic particles)
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The lower panel of Fig. 4.8 again illustrates the in�uence of damping already described
in Sec. 4.3 and Sec. 4.4.1. Interestingly Eq. (4.28) indicates that the reorientation
angel and hence the value of εHS

n does not depend on the particle radius for elastic
particles. For �nite inelasticity A, the particle radius again in�uences via l and ρel.
Hence, changing the particle radius of inelastic particles, has the same impact as
changing the inelasticity itself (Fig. 4.8, intermediate panel).

Material Youngs Density Poisson's
Modulus [kg/m3] Ratio

[GaP]

Iron 200.0 7870.0 0.291
Copper 110.0 8930.0 0.343
Magnesium 44.0 1740.0 0.35
Nylon 1.0 1020.0 0.4
Silicon rubber (hard) 0.1 2000.0 0.5
Silicon rubber (soft) 0.01 2000.0 0.5

Table 4.1.: Mechanical Properties of the used materials. Taken from [1]
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4.5. The Role of Friction

So far we only considered smooth spheres where the interaction force between to
colliding particles exclusively acts in normal direction (F = Fnêr). In this section we
address the in�uence of friction which acting in tangential direction (F = Fnêr+Ftêϕ).
With this, the particles may exchange (intrinsic) angular momentum and we have
two further degrees of freedom: The particles orientation Φi and the corresponding
angular velocities Φ̇i. Assuming no particle rotation at the instant of impact (Φ̇0

i = 0)
the complete collision still takes place in a plane (see Sec. 4.2). This allows to stick
with the notation of Sec. 4.2 as well as with the collision setup Fig. 4.2 without loss
of generality. Including friction and hence tangential forces, the complete collision
dynamics is governed by

r̈ = rϕ̇2 +
Fn
me�

(4.29)

ϕ̈ = −2
ṙϕ̇

r
+

Ft
rme�

Φ̈1 = − 1

I1

r

2
Ft , Φ̈2 =

1

I2

r

2
Ft ,

where Ii = 2
5
miR

2
i is the moment of inertia of the corresponding sphere i. The

corresponding initial conditions read

r(0) = r0 , ṙ(0) = ṙ0 , ϕ(0) = 0 , (4.30)

ϕ̇(0) = ϕ̇0 = e
v

l
, Φi(0) = 0 , Φ̇i(0) = 0 .

If we assume an in�nite tangential force, the particles stick together on impact and a
dumbbell shaped object is formed, where the particles themselves rotate at the same
angular velocity as the whole dumbbell. The moment of inertia of this dumbbell
(with respect to an axis through its center of mass, perpendicular to its axis of
symmetry) reads Ifrict = 14

5
mR2, if we further assume identical particles. For smooth

spheres (i.e. Φ̇i = 0) the corresponding moment of inertia of the dumbbell is given
by Ismooth = 2mR2. As the total angular momentum L, consisting of orbital angular
momentum of the two particles and the particle spin (intrinsic angular momentum),
is conserved during the collision, the rotation speed of the dumbbell ϕ̇0 di�ers for
smooth spheres and frictional spheres respectively. The ratio of both values reads

ϕ̇0
frict

ϕ̇0
smooth

=
Ismooth

Ifrict
=

10

14
≈ 0.71 . (4.31)

That is, for frictional particles, the rotation speed is reduced to approximately 70%
of the corresponding rotational speed for smooth spheres. As the contact duration
is only marginally a�ected by friction, this implies reduced reorientation angles in
the case of friction: ϕ′frict ≈ 0.71 ϕ′smooth. This, in turn, implies that the di�erence
of the εHS

n (e) curves to the expected value εn(e) = 1 is smaller for the frictional
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particles when compared to the case of smooth spheres. While still being present, the
e�ect of negative coe�cients of normal restitution is hence shifted to higher impact
eccentricities by friction.
To illustrate these �ndings, as a particular tangential force, we discuss the model by
Cundall and Strack where the tangential component of the impact is modeled by a
linear spring elongating according to the tangential displacement, whose in�uence is
limited by
Coulomb's friction law [68]:

Ft = −sign (vrel,t) ·min
(∣∣ktζ∣∣ , µt |Fn|) , (4.32)

where
vrel,t = rϕ̇+

r

2

(
Φ̇1 − Φ̇2

)
(4.33)

and

ζ(t) =

∫ t

t′=0

vrel,t (t′) dt′. (4.34)

kt is the sti�ness of the tangential spring and µt the friction parameter. Fig. 4.10
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Figure 4.10.: Abscissa of both panels: Impact eccentricity e ≡ d/l. Ordinate of
both panels: Coe�cient of Normal Restitution εn (hard sphere def-
inition). In�uence of friction: Solid lines: Smooth spheres/no fric-
tion (µ = 0). Dashed lines: friction included (µ 6= 0). a) Nor-
mal force model: Linear dashpot. Parameters: kt = 1.0e05 N/m,
µt = 1.0e8, k = 1.5e05 N/m, R = 0.1 m, ρ = 1140.0 kg/m3, v =
10.0 m/s, γ = 0.0 kg/s (elastic particles) b) Normal force model:
Viscoelastic spheres. Parameters: Soft silicon rubber (see Tab. 4.1)
kt = 1.0e05 N/m, µt = 1.0e8 R = 0.1 m, A = 0.0 s (elastic collision),
v = 10.0 m/s

displays the in�uence of friction for the two normal force models discussed before: The
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linear dashpot model (upper panel) and viscoleastic spheres (lower panel). In both
cases the above mechanism describes the result. Friction reduces the reorientation
angle and hence the di�erence to the expected value of the coe�cient of normal
restitution εn = 1 is reduced.

4.6. Summary

During an instantaneous collision of hard spheres, the concerned particles exchange
momentum while their positions remain unchanged. The full collision is hence de-
scribed by two scalar values relating pre- and postcollisional particle velocities: The
coe�cient of normal and tangential restitution. Consequently, particle motion is not
considered in the de�nition of these characteristic quantities.
As the hard sphere model claims to be a good approximation for the collision of
spheres consisting of real life material, the values of the coe�cients of restitution
need to be determined according to the hard sphere de�nition, either experimentally
(e.g. [20]) or theoretically by integration of veri�ed interaction force laws (e.g. [89]).
This has been done extensively for central impacts, realizing that the coe�cients of
restitution depend on the impact velocity and, thus, are no pure material properties.
Assuming molecular chaos, most collisions in a granular system are eccentric. Within
eMD or Kinetic Theory of granular matter, the hard sphere concept of the coe�cient
of restitution is hence frequently applied to oblique impacts without further consider-
ation. Recently, for the very speci�c collision of nanoclusters [52], it was shown that
this may be questionable. Using the hard sphere de�nition for measuring the coe�-
cient of normal restitution lead to surprising results: Besides the impact velocity, the
coe�cient of normal restitution depend on the impact eccentricity, or, in other words,
on the impact geometry. In the course of this geometry dependency, even negative
values for the coe�cient of normal restitution are attainable, which, of course, are
not valid within eMD or Kinetic Theory.
In this work we have shown that both, the geometry dependency as well as nega-
tive values of the coe�cient of normal restitution are not a peculiarity of colliding
nanoclusters. Quite the opposite: The described e�ects are unavoidable for all kinds
of collisions governed by �nite interaction forces. For various force models, they are
prominent for a huge parameter space, ranging orders of magnitude. Our work hence
points towards sever de�ciencies of the widely used hard sphere model. It calls for a
simple criterion which allows to access the correctness of the hard sphere model and
for more sophisticated collision rules including particle reorientation.
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A. Appendix: Density distribution
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In this appendix, the method used to determine the one-dimensional density �eld
of a given distribution of particles, is discussed. This method in contrast to most
others does not require the system to be spatially discretised by binning, but instead
provides a scale free distribution.
In any two dimensional set of particles, each particle can be identi�ed by two points in
space, its position minus the radius r− and its position plus the radius r+, marking the
beginning and the end of the particle (�g A.1 a). These two points then are assigned
−1 for r+ and +1 for r−, which creates a distribution of ±1's in any direction of
the system (�g A.1 b). Those values then are summed up, beginning in one side of
the system. That means, if any particles share a common range in the summation
direction, the value in this range is increased by one for every particle in this range,
and decreased if the overlap is gone (�g A.1 c). The result is a one-dimensional,
binning free distribution of particle numbers.

+1 -1 +1 +1 -1 -1

0 1 0 1 2 1 0

a)

b)

c)

d)

Figure A.1.: Schematic view of the calculation of the one-dimensional particle density
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