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The multisphere method is commonly used as an approximation for modeling particles of 
complex geometric shapes in DEM simulations. However, typically the mass and mo-
ment of inertia of the resulting sphere clumps are incorrectly computed as a result of the 
(artifactual) contribution of the sphere-sphere overlaps. We adapted the current public re-
lease of LIGGGHTS in order to perform DEM simulations of rigid bodies using the mass 
and moment of inertia of the particles as obtained through an analytical (exact) method.  

INTRODUCTION 
Many particulate systems occurring in nature or in industrial applications are made of parti-

cles which have complex geometric shapes. The correct modeling of particle shape in DEM sim-
ulations is important for accurately predicting the interaction between the particles as well as the 
dynamic behavior of the system.  

The multisphere method, which consists of combining spheres of different sizes to build a rig-
id body (sphere clump), is a widely used method for approximating complex particle shapes in 
DEM simulations [1-5]. However, this method suffers from an obvious deficiency that is not 
considered in most numerical simulations: both the mass and moment of inertia of the clumps 
incorporate the excess (artifactual) contribution from the sphere-sphere overlaps. Indeed, one can 
calculate the mass and moment of inertia of each clump numerically, e.g. using Monte Carlo [5]. 
Evidently, such a calculation can become computationally too expensive if the system contains a 
large number of particles. Some authors proposed to adjust the density of the spheres constituting 
the clumps in such a manner to obtain the target mass and moment of inertia [4]. However, using 
the correct density of the particle’s material is essential in order to correctly model inter-particle 
collisional forces.  

Here we compute the mass and moment of inertia of each complex particle analytically, by 
explicitly removing the excess contribution due to the overlaps between constituent spheres with-
in the clump. We have adapted the current public release of LIGGGHTS [7] in order to allow us 
to perform the numerical simulations using the exact results of these analytical calculations. In 
the next section we present the equations we use to compute the mass and moment of inertia of 
the sphere clumps. These equations are applicable when sphere-sphere overlaps within a rigid 
body involve not more than two spheres. We then discuss an example of numerical simulations 
that illustrates the relevance of the correction in the particles’ mass and moment of inertia for the 
dynamic behavior of a granular system made of particles of complex geometric shape. 
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Fig 1. Schematic diagram of a sphere-sphere overlap within a clump (rigid body). D is the dis-

tance between the centers of the overlapping spheres, which have radii R1 and R2. t1 and t2 denote 
the respective distances from each sphere’s center to its cap base.  

 

ANALYTICAL EQUATIONS 
We consider two overlapping spheres within a rigid body, the centers of which are separated 

by a distance D (Fig. 1). The overlapping spheres are labeled 1 and 2. The contribution of the 
sphere-sphere overlap to the mass and moment of inertia of the rigid body is computed for all 
pairs of constituent spheres in the clump for which D < R1 + R2. The mass moverlap of the sphere-
sphere overlap is the sum of the masses of caps 1 and 2 (mcap 1 and mcap 2, respectively), whereas 
the mass of each cap is given by the equation, 

mcap k = ρpπ 3!" #$⋅ 3Rkk
2 − k

3!" #$,  (1) 

with ρp standing for the material’s density and k = 1, 2, whereas k = Rk - tk  Moreover, we calcu-
late the moment of inertia of the caps by considering, firstly, the case where the vector D = r1−r2 
(where rk is the center-of-mass position of sphere k) is parallel to the z axis (Fig. 1). In this case, 
the moment of inertia tensor of each cap k ( Îcap k ) is diagonal with components given by (see also 
Ref. [6], which uses these equations for DEM simulations of pharmaceutical tablets),  
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In Eq. (2), Lcentr k is the geometric centroid of cap k; it is computed relative to the center of sphere 
k. Furthermore, Loverlap k is the distance between the center of sphere k and the center of mass of 
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the total overlap volume which comprises caps 1 and 2. The tensor of inertia Îoverlap,z of the 

sphere-sphere intersection is then given by Îoverlap,z = Îcap 1 + Îcap 2. We note that this equation con-

siders that D is parallel to the z axis (Fig. 1). The tensor of inertia Îoverlap  for the case in which D 

makes an angle ϕ with the z axis reads, Îoverlap = R̂Îoverlap,z R̂
−1,where R̂  is the rotation matrix asso-

ciated with the rotation of a vector by an angle ϕ around the axis eD × ez, with eD = D/|D|.  

We then calculate the body’s total mass mbody, center-of-mass position rcm and inertia tensor 
Îbody using the values of the mass (moverlap) and tensor of inertia ( Îoverlap ) obtained as described 
above. The equations for mbody and rcm write, 

mbody = msphere ii=1
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No∑ ,  (4) 
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where Ns and No denote, respectively, the number of spheres and caps pairs in the body, while 
ri(j) denotes the center-of-mass position of sphere i (caps pair j). Moreover, Îbody reads, 
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where Â is the inertia tensor associated with the discrete distribution of mass elements mk, each 
representing either a caps pair or a sphere. That is,  
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where ak = 1 (−1) for spheres (caps pairs), while Xk, Yk, Zk are the distances between the center-
of-mass of element k and the body’s principal axes. The inertia tensor is then diagonalized by 
performing a principal axis transformation. The normalized eigenvectors obtained from this 
transformation yield the orthogonal transformation matrix Ĵ.  Using this matrix, a vector u in the 
body’s fixed frame of reference is transformed to the inertial frame through the equation, 
uin = Ĵu.  

Finally, the motion of the rigid body is computed by numerically solving the equation, 

      mbodyrcm = Fii=1

Ns∑ +mbodyg ,                  (8) 

where g is gravity and Fi is the total force on the i-th constituent sphere of the clump, where the 
forces considered in the calculation of Fi are due to collisions with particles belonging to other 
rigid bodies. Furthermore, the resultant torque M on the rigid body is given by,  

M = ri − rcm( )
i=1

Ns∑ ×Ft,i,       (9)  

-  219 - DEM6 - International Conference on DEMs



 

 

where Ft,i is the tangential force on the body’s i−th constituent sphere, while the angular velocity 
of the body, ω , evolves according to the Euler’s equations in the body’s fixed frame, 
Î ω + ω × (Î ω) = Ĵ −1M.  

 

DISCUSSION 
It is clear that simulations using the multisphere method should account for the correct com-

putation of the particles’ mass and moment inertia. However, it is interesting to discuss an exam-
ple of numerical simulations where the effect of the error due the usual approximation (of ne-
glecting the artifactual contributions due to sphere-sphere overlaps) on the macroscopic dynamic 
behavior of the system is visible.  

We consider a granular gas of 864 perfectly elastic particles, each made of two spheres of 
equal size, evolving within a cubic box with periodic boundary conditions. The density of the 
spheres constituting each rigid body is ρp = 1140 kg/m3, their Young modulus is Y = 107 Pa and 
their Poisson ratio ν = 0.40. Both constituent spheres of the clump have diameter ds = 13.33 cm 
and are separated by a distance D = ds/2. The volume fraction of the granular system is 0.001 and 
the total kinetic energy is about 3.24 kJ.  

We also perform a simulation using spheres of diameter dL = 20 cm. Each sphere has the same 
material properties as the rigid bodies but its mass is set equal to mbody, i.e. the mass of the rigid 
body computed analytically (with Eq.(4)).  

The simulations are performed using the Hertz-Mindlin model to compute the normal colli-
sional forces between the particles [7]. We assume no damping and no tangential forces. Thus, 
the spherical particles do not display rotational motion, while the rigid bodies do. In Fig. 2 we 
compare the values of mean-square displacement (msd) calculated for the system of spherical 
particles (dotted line) with the ones obtained for the two-sphere clumps with the correct (contin-
uous line) and wrong (dashed line) values of mass and moment of inertia. 
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Fig 2. The continuous line shows the mean-square displacement (msd) obtained using the ana-
lytical equations to compute the correct values of the mass (mbody) and moment of inertia of the 

complex particles (rigid bodies modeled here as two-sphere clumps). The dashed line denotes the 
result obtained with the multisphere method without performing the correction. The dotted line 

gives the msd for a sphere which has the mass mbody. 

 

As we can see in Fig. 2, the values of mean-square displacement of the rigid bodies calculated 
without the correction differ from the ones obtained with the correct calculation of the particles’ 
mass and moment of inertia. Although the difference is small (about 10% of the difference be-
tween the respective msd’s of spherical particles and rigid bodies), certainly the error should de-
pend on the particle shape. While we have chosen the simplest configuration of two-sphere 
clumps in this preliminary study, in the future these simulations should be extended in order to 
account for more complex geometric shapes using a larger number of particles to build the 
clumps. Also it could be helpful to analyze the separate effects of correcting the mass or the 
moment of inertia on the results. 

CONCLUSION 
We presented analytical equations for computing the mass and moment of inertia of particles 

of complex geometric shapes built with the multisphere method, which can be used when sphere-
sphere overlaps within each clump involve not more than two spheres. The mass and moment of 
inertia of each complex particle are computed by explicitly removing the excess (artifactual) 
contribution of the sphere-sphere intersections. We adapted the current public release of 
LIGGGHTS [7] in order to allow us to perform molecular-dynamics simulations using the results 
obtained from these analytical calculations. We discussed an example of a granular system where 
the effect of the error arising from the usual approximation (of not excluding the artifactual con-
tributions of the sphere-sphere overlaps) on the dynamic behavior of the system is visible. 
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