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A recent conjecture in this Journal, concerning the existence of spiral stability phases in
Hartley’s oscillator, is corroborated amply. We report numerically computed stability
phase diagrams indicating precisely where spirals of periodicity and chaos may be found
in several control planes of the system. In addition, we describe some remarkable param-
eter loops in control space which allow one to trace identical dynamical behaviors by tun-
ing totally independent parameters.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Electronic circuits containing nonlinear elements have a
long tradition in exhibiting rich dynamical behaviors as al-
ready described in several books [1–4]. However, despite
all knowledge accumulated so far, researchers have not
been idle and nonlinear circuits remain subjects of much
activity and sources of surprising and unanticipated re-
sults. The present work is motivated by interesting and
intriguing findings reported recently in this Journal by
Tchitnga et al. [5], who were able to find chaos experimen-
tally in Hartley’s oscillator (Fig. 1).

As it is known, Hartley’s oscillator is a classical device
introduced in 1915, based on two coils and one capacitor.
Later, in 1918, Colpitts introduced his celebrated circuit
based on two capacitors and one coil which, therefore, is
the electrical dual of Hartley’s oscillator. Both oscillators
were key components in early radio telephony and still
remain standard devices that can be used to produce a
wide range of frequencies [6]. Since such oscillators are
governed by three first-order ordinary differential equa-
tions, one can expect them to generate chaotic oscillations.
Remarkably, while Colpitts’ oscillator has been exten-
sively investigated for its chaotic [7] as well as its hyper-
chaotic [8] dynamics, similar investigations for Hartley’s
oscillator remain essentially nonexistent to this date. Nota-
ble exceptions are the timely work of Tchitnga et al. [5],
and an earlier work by Kvarda [9]. Since the oscillators of
Hartley and Colpitts are duals, it is theoretically interesting
to investigate if such duality is in some way reflected also
in their stability diagrams.

In parallel developments, the presence of certain
remarkable points, called periodicity hubs [10,11] have
been recently reported in simulations and experiments
[12,13] of the behavior of an autonomous circuit discussed
in this Journal by Kyprianidis et al. [14], Koliopanos et al.
[15], and Stoupoulos et al. [16]. Such hubs are attracting
attention nowadays because they act as remarkable orga-
nizing centers from which an infinite number of spirals
of stable oscillatory phases emanate. Based on certain sim-
ilarities between the equations of motion governing the
two-component circuit of Kyprianidis et al. and those
underlying Hartley’s oscillator, it was conjectured [12] that
Hartley’s oscillator could also display hubs and spirals of
the type found in the two-component circuit.

The aim of this paper is to report a numerical investiga-
tion that amply corroborates the presence of infinite
families of spiral phases of stability in phase diagrams for
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Fig. 1. Schematic representation of Hartley’s oscillator, governed by the
four-dimensional flow in Eqs. (1)–(4).

130 J.G. Freire, J.A.C. Gallas / Chaos, Solitons & Fractals 59 (2014) 129–134
Hartley’s oscillator. In addition, we also report other amaz-
ing circular structures which allow one to follow identical
dynamical behaviors by tuning totally independent param-
eters. Such circular structures were found for a multitude
of sections of the multi-dimensional control parameter
space. Since Hartley’s oscillator involves a relatively high
number of parameters, the experimental search of its spi-
rals and other structures can be prohibitively time-con-
suming. Here, the parameter plane characterization was
done thanks to the decisive help of 1536 high-performance
processors of a SGI Altix cluster with a theoretical peak
performance of 16 Tflops.
2. Hartley’s circuit and its autonomous flow

As mentioned, the circuit studied here (Fig. 1) contains
a JFET and a tapped coil and was investigated experimen-
tally by Tchitnga et al. [5]. To model the circuit, these
authors considered some simplifications, namely, they ne-
glected the internal resistance of the tapped coil and used a
high-frequency small-signal equivalent circuit model of a
JFET, as described in their paper. In this case, the equations
governing the circuit are the following [5]:

CGS
dvGS

dt
¼ �i1 þ i2 � iD � id; ð1Þ

CGD
dvGD

dt
¼ �i2 þ id; ð2Þ

L1
di1

dt
¼ vGS; ð3Þ

L2
di2

dt
¼ �vGS þ vGD þ E; ð4Þ

where the currents are

id ¼
0; if vGS 6 Vc;

gðvGS � VcÞ2; if vGD 6 Vc;

gðvGS � vGDÞðvGS þ vGD � 2VcÞ; if vGD P Vc;

8><
>:

iD ¼ IS½expðvGS=VTÞ � 1�:

All variables and parameters are defined in Fig. 1. Unless
otherwise stated, we follow the experiments and fix
CGS ¼ 3:736 pF; CGD ¼ 3:35 pF; IS ¼ 33:57 fA; Vc ¼�1:409 V;
VT ¼ 25 mV; E ¼ 2:8 V; g ¼ 1:754 mAV�2

; L1 ¼ 24:5 lH and
L2 ¼ 4 lH.

As a preliminary result and check of the model equa-
tions, Fig. 2 presents bifurcation diagrams which corrobo-
rate the chaotic region discovered by Tchitnga et al. [5].
In their Fig. 3, it seems that x1 should read x2. Here and be-
low, computations were started at the minimum value of
the parameter from the arbitrarily chosen initial condition
ðvGS;vGD; i1; i2Þ ¼ ð�1:25;�2:5;10�6;10�6Þ and continued
by ‘‘following the attractor’’ [17]. The next Section reports
our main findings, namely numerically obtained phase dia-
grams displaying stability regions of the self-pulsations
generated by Hartley’s oscillator or, equivalently, two-
parameter bifurcation diagrams for the circuit.
3. Stability diagrams for Hartley’s oscillator

Fig. 3 presents in two complementary ways (described
below) phase diagrams characterizing the far-reaching
regular organization induced by the set of stable oscilla-
tions of the circuit. Although obtained using two very dis-
tinct algorithms, the boundaries between chaotic and
periodic regions match perfectly. What is more important,
both phase diagrams reveal unambiguously the presence
of periodicity hubs (focal points [10]) with a wide-ranging
clockwise spiral organization around them.

Fig. 3(a) shows a Lyapunov stability diagram, obtained
by plotting on a fine parameter grid the largest non-zero
Lyapunov exponent. Such exponents are familiar indicators
that allow one to discriminate chaos (positive exponents)
from periodic oscillations (negative exponents) [18,19].
Fig. 3(b) presents an ‘‘isospike diagram’’ [20] namely, a dia-
gram obtained by counting the number of peaks (local
maxima) contained in one period of the periodic oscilla-
tions of a variable of interest, vGD in all our diagrams. These
latter diagrams are particularly helpful because, in addi-
tion to discriminating periodicity from chaos, they simul-
taneously display how the waveform of every periodic
oscillation evolves as parameters are changed.

Each individual panel in Figs. 3–6 displays the analysis of
self-pulsations recorded for a mesh of 1200� 1200 ¼
1:44� 106 parameter points.They were obtainedby integrat-
ing numerically Eqs. (1)–(4) using the standard fourth-order
Runge–Kutta algorithm with fixed time-step h ¼ 5� 10�11.
In all diagrams, integrations were always started from
the same initial condition: ðvGS;vGD; i1; i2Þ ¼ ð�1:25;�2:5;
10�6;10�6Þ. As usual, the first 2� 105 integration steps were
disregarded as a transient time needed to approach the
attractor, with the subsequent 4� 106 steps used to compute
the Lyapunov spectrum. To discriminate solutions and to
count the number of peaks within a period of vGD, after com-
puting the exponents we continued integrations for another
4� 106 time-steps recording up to 800 extrema (maxima
and minima) of vGD and checking whether pulses repeated
or not. The computation of stability diagrams is a standard
calculation that we performed as described in detail, e.g., in
Ref. [21].

Fig. 4(a)–(d) presents isospike diagrams as recorded for
a distinct section of the control parameter space. This fig-
ure illustrates with increasing resolution the presence of
periodicity hubs (focal points) with their characteristic
infinite set of spirals. In contrast to what happens in
Fig. 3, here the winding occurs anticlockwise around the
main focal point [10]. The regular behavior revealed by
the isospike diagrams in Fig. 4(a)–(d) was corroborated
independently by simultaneously computing Lyapunov
stability diagrams, one of them being shown in Fig. 4(e).
The agreement is excellent.
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Fig. 3. Phases diagrams illustrating in two complementary ways infinite sequences of wide ranging clockwise spiraling phases of periodic oscillations.
(a) Lyapunov stability diagram; (b) isospike diagrams displaying the number of peaks in one period of vGD . Absence of periodicity, ‘‘chaos’’, is represented in
black. See text. Capacitances are measured in pF, E in Volts.
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Fig. 2. Bifurcation diagrams of the local extrema for the variables (a) vGD and (b) vGS , showing the presence of chaotic solutions in the interval
2:6 V < E < 3:7 V. All voltages are measured in Volts. Both axis are divided in 600 equally spaced points.
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In all isospike diagrams, we used a palette of 17 colors.
Solutions having more than 17 peaks were plotted by recy-
cling the 17 basic colors ‘‘modulo 17’’, namely by assigning
them a color-index given by the remainder of the integer
division of the number of peaks by 17. Multiples of
17 are given the index 17. In Fig. 4(a)–(c), black is used



Fig. 4. Phases diagrams illustrating sequences of wide anticlockwise spiraling phases due to periodic oscillations. (a–d) Isospike diagrams displaying
successive magnifications of the distribution of the number of peaks in one period of vGD . Absence of periodicity, ‘‘chaos’’, is represented in black. (e)
Lyapunov stability diagram corroborating the structure seen in panel (d). Here, absence of periodicity is shown in white. See text. Capacitances are in pF.
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Fig. 5. Distinct parameter planes illustrating the two possible spiraling modes. Left column: clockwise spirals; Right column: anticlockwise spirals.
Capacitors are measured in pF and inductances in lH.
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Fig. 6. Two distinct sections of the control parameter space illustrating characteristic circular structures formed by the interconnection of a pair of shrimps
[23–25]. Such complex circular stability regions exist abundantly in all parameter sections investigated. Closed interconnections involving more than two
shrimps can be also identified. Inductances are measured in lH and capacitors in pF.
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to represent ‘‘chaos’’ (i.e., lack of numerically detectable
periodicity). Under a different light, in Fig. 4(d) white is
used to represent chaotic pulsations. From these figures
one sees that the number of peaks contained in one per-
iod of the periodic oscillations of vGDðtÞ increases steadily
by 1 after every turn towards the focal hub. It is perhaps
of interest to mention that there is no special reason for
taking peaks mod 17. This specific number is simply a
good compromise for contrasting many oscillations with
distinct number of peaks. Any other value (not too small)
could also be used. The point of the palette is to try to
maximize contrast between the profusion of small adja-
cent regions.

Fig. 5 displays a surprising behavior seen for spirals
found for yet another set of control parameter planes. In
these planes we found parameter windows capable of dis-
playing simultaneously both clockwise and anticlockwise
spirals. Such striking abundance of spirals was recently ob-
served in a rather distinct system namely, in a circuit con-
taining a tunnel diode [22]. It is important to recall that so
far there is no theoretical framework to explain why such
spiraling reversals can occur. Thus, Hartley’s oscillator
corroborates the behavior found for tunnel diodes and is
a second example of an apparently complex effect waiting
for a theoretical explanation. In all spirals, the number of
peaks increases by one unit after a full turn, roughly,
towards the focal hub. Similar results are obtained when
using any of the other three variables to count peaks. But
the key point here is simpler: the immense abundance of
wide-ranging spirals in Hartley’s oscillator. That the dual
Colpitts oscillator also contains hubs and spirals profusely
can be inferred from figures in the beautiful work by de Feo
and Maggio [7].
As a final result, Fig. 6 presents for two different param-
eter planes another unexpected feature discovered in Hart-
ley’s oscillator. This figure shows several examples of pairs
of ‘‘mating’’ shrimps, namely of shrimps [23–25] that are
united perfectly by their four sets of ‘‘legs’’. In Fig. 6(b)
there is a closed loop formed by four shrimps. Such circular
shrimp arrangements exist in two distinct flavors: display-
ing either just a single color or being multicolored. This lat-
ter feature shows that the number of peaks within a period
of vGD changes when circling around the shrimp legs. Sim-
ilar results emerge when counting peaks for any of the
other variables of the problem. Again, as above, there is
no theoretical underpinning to explain/predict such
remarkable behaviors in control parameter plane. We
remark that such circular arrangements are potentially
interesting for experimental applications because they
allow one to experience identical dynamical changes when
tuning two rather distinct parameters.
4. Conclusions

In summary, this work augmented significantly the
knowledge about chaotic pulsations in Hartley’s oscillator
by identifying a plethora of chaotic phases in several
two-parameter stability diagrams. The conjecture concern-
ing the existence of stability spiral phases in Hartley’s
oscillator was found to be true, with large spirals existing
abundantly. The oscillator supports both clockwise and
anticlockwise spirals, making them particularly attractive
for further investigations. Hartley’s circuit also shows cer-
tain circular arrangements of pairs of shrimps and many
other complex structures that are not easy to classify
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systematically. Cyclic arrangements involving more than
two shrimps were also found abundantly. We believe the
high-resolution phase diagrams presented here to be an
useful asset for experimental work because they indicate
parameter windows where to look for rich dynamics.
Regrettably, so far there is no theoretical prescription to lo-
cate spirals or any other of the stability phases discussed
here. Thus, the only way to find them is either by direct
numerical prospection or through experimental work. We
hope that this work may stimulate the experimental veri-
fication of the self-generated pulsation phases for Hartley’s
oscillator. This system has an exceptionally rich dynamics
that certainly harbors many useful surprises.
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