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Abstract

In this thesis, the fluid flow around a two and three-dimensional dune is simulated with the help of the 

open source C++ library OpenFOAM1. The simpleFOAM solver, which is supplied by OpenFOAM, 

has proven to be reliable and has shown a strong correlation with field measurements conducted in the 

paper “The role of streamline curvature in sand dune dynamics” by Giles F. S. Wiggs in 1996. It can be 

shown, that the two-dimensional as well as the three-dimensional calculations are in good agreement 

with the experimental data.

However, in order to get reasonable steady-state results the initial conditions are calculated using the 

transient  solver  pimpleFOAM.  The  Reynolds-averaged  Navier-Stokes  equation  is  being  used  to 

simulate the time-averaged turbulent fluid flow around the dune and different meshing tools as well as  

cell geometries are compared. 

The validation of a fluidized model as an alternative to modelling the individual sand particles has 

proven to be difficult, because sand doesn't show a conventional fluidic behaviour. 

Im Rahmen dieser Arbeit wurde das Strömungsprofil sowohl um eine zweidimensionale als auch um 

ein dreidimensionale Düne mit  Hilfe  der  Open-Source  C++ Bibliothek OpenFOAM simuliert.  Die 

simpleFOAM Simulationsroutine, welche von OpenFOAM zur Verfügung gestellt wird, stellte sich als 

verlässlich heraus und zeigte eine starke Relation zu den in  “The role of streamline curvature in sand 

dune dynamics” veröffentlichten Werten von Giles F. S. Wiggs aus dem Jahre 1996.  Sowohl der zwei-  

als  auch  der  dreidimensionale  Fall  konnte  in  guter  Übereinstimmung  mit  den  Ergebnissen   der 

Veröffentlichung simuliert werden. 

Allerdings  mussten  die  Anfangswerte  mit  Hilfe  des  transienten  pimpleFOAM  Gleichungslösers 

approximiert  werden und dann anschließend in simpleFOAM übernommen werden.  Die Reynolds-

gemittelten  Navier-Stokes-Geichungen  wurden  zur  Approximation  der  turbulenten  Strömungen 

verwendet und unterschiedliche Diskretisierungsgitter zur Validierung herangezogen. 

Die Überprüfung der Gültigkeit von fluidisierten Modellen als Alternative zur Simulation einzelner 

Sandkörner stellte sich als kompliziert heraus, da Sand kein herkömmliches Fluidverhalten zeigt und 

somit nicht ausreichend vom Strömungslöser erfasst werden kann.

1 http://www.openfoam.org/version2.1.0/
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1. Introduction

A dune is a hill of sand created by wind or water flow. While it can occur in many different 

shapes, this work is concentrating on crescent-shaped barchans as shown in Illustration 1, which 

are formed under wind that blows continuously from one direction. 

The studying of sand dunes has a long history and is for example part of Ralph Bagnold's work 

“The Physics Of Blown Sand And Desert Dunes” from 1941. His work is mainly speculative and 

written at a time when the turbulent fluid flow became known thanks to the work of Prandl 

(1935). While Bagnold concentrated on the movement of individual sand grains [1] other studies 

for example by Wilson in 1973, concentrated on the formation of groups of dunes. Since then the 

theories have been improved and compared to wind tunnel measurements. 

This thesis concentrates on the works by Giles F.S. Wiggs from 1996 published in the paper 

“The role of streamline curvature in sand dune dynamics” to compare the simulation results. It is 

a field study of a single, about 10 meter high, unvegetated barchan dune in the Oman, compared 

to wind tunnel measurements over a 1:200 scale fixed model. He found “similar patterns of wind 

and shear velocity over the dune, confirming significant flow deceleration upwind of and at the 

toe of the dune, acceleration of flow up the windward slope, and deceleration between the crest 

and brink ”. According to him this reflects previous studies and this thesis tries to verify his 

results with the help of computational fluid dynamics using OpenFOAM. 
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Illustration 1: Air view of a barchan dune



2. Theory

2.1. Basic equations

In the following chapter a short overview of the governing transport equations as well as a brief 

introduction to numerical solution schemes will be given.

Illustration  2 shows  a  small  fluid  element  with  a  side  length  of  δx,  δy  and  δz.  The  fluid 

properties are given at a point, which represents the smallest possible element of fluid whose 

macroscopic  properties  are  not  influenced  by  individual  molecules  [2].  So  the  pressure, 

temperature, density and the velocity vector should be written as:

p(x, y, z, t), T(x, y, z, t), ρ(x, y, z, t), and u(x, y, z, t).

Further on to avoid this long-winded notation, the dependency on space and time will no longer 

be stated. The letters N, E, W and S are corresponding to the geographic directions and T and B 

are  representing the top and the bottom.  To define the flux over  the  cell  faces  of  the fluid 

element, a Taylor series expansion around the cell centre is done, as shown exemplarily for the x 

direction in equations (1) for the density and velocity.  

E,t=x
1

2
δx=

1

1 !

∂
∂ x x

1

2
δx−x 1

2 !

∂2

∂ x
2 x1

2
δx−x ⋯

uE ,t=u x1

2
δx=u

1

1!

∂u

∂ x x
1

2
δx−x  1

2!

∂2
u

∂ x
2 x

1

2
δx−x ⋯

 (1)
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Illustration 2: Fluid element for conservation laws 
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The solution can be expressed accurately enough, using the first two terms of the Taylor series, 

thus equations (1) can be simplified to equations (2).

E ,t=
∂
∂ x 12 δx

uE ,t=u
∂u

∂ x  1

2
δx

 (2)

The area AE is given by its side lengths, δy and δz. To give a better understanding, the velocity 

vector u will be decomposed in its x, y and z components (u,v, w). Under consideration of these 

specifications,  the mass flow rate for a face can be determined and is shown in equation (3).

ṁE ,t=E,t⋅uE ,t⋅AE=[∂
∂ x 12 δx]⋅[u∂u

∂ x 12 δx]⋅δy⋅δz

ṁE ,t=[⋅u
∂ u

∂ x 12 δxu
∂
∂ x  1

2
δx∂

∂ x
⋅
∂u

∂ x  1

2
δx

2

]⋅δy⋅δz

 (3)

By neglecting 
∂
∂ x

⋅
∂u

∂ x
equation (3) can be simplified to equation (4).

ṁE ,t=[u
∂u

∂ x 1

2
δ x ]⋅δy⋅δz  (4)
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Illustration 3: Mass flows in and out of a fluid element

x
y

z

x , y , z[u−
∂u

∂x  1

2⋅δx]δy⋅δz

[ v
∂v 

∂ y  1

2 ⋅δy]δx⋅δz

[ v−
∂v 

∂ y  1

2 ⋅δy ]δx⋅δz

[u
∂u

∂x  1

2⋅δx]δy⋅δz

[ w
∂ w

∂ z  1

2 ⋅δz ]δx⋅δy

[ w−
∂w

∂ z  1

2 ⋅δz ]δx⋅δy



Illustration 3 shows the mass flow in and out of a fluid element,  which is also displayed in 

equation (5).

∂m

∂ t
=mW−mEmS−mNmB−mT

∂m

∂ t
=[u−

∂u
∂ x −u

∂u
∂ x ]⋅[δy⋅δz ]

[v−
∂v 

∂ x −v
∂v

∂ x ]⋅[δx⋅δz ]

[w−
∂w

∂ x −w
∂w 

∂ x ]⋅[δx⋅δy ]

 (5)

The result of expanding and solving Equation (5) is shown in Equation (6) and can be further 

simplified, as shown in Equations (7).

−
∂m

∂ t
=
∂u

∂ x
[δx⋅δy⋅δz ]

∂v

∂ y
[δx⋅δy⋅δz ]

∂w

∂ z
[δx⋅δy⋅δz ]  (6)

∂m

∂ t
=
∂V 

∂ t
=V

∂
∂ t


∂V

∂ t
 with V=[δx⋅δy⋅δz ]=const. ⇒

∂m

∂ t
=V

∂
∂ t

−
∂m

∂ t
=−[δx⋅δy⋅δz ]

∂ 
∂ t

=
∂u

∂ x
[δx⋅δy⋅δz ]

∂v 

∂ y
[δx⋅δy⋅δz ]

∂w

∂ z
[δx⋅δy⋅δz ]

0=
∂u

∂ x

∂v 

∂ y

∂w

∂ z

∂
∂ t

(7)

In a more compact vector notation, Equation (7) can be written as shown in Equation (8). It is the 

unsteady,  three-dimensional  mass  conservation  or  continuity  equation  at  a  point  in  a 

compressible fluid [2]. For an incompressible fluid the density is constant, so Equation (8) can 

be simplified to Equation (9) .

∂
∂ t

divu=0  (8)

for
∂
∂ t

=0 : div u=div u  

⇒div u=0  (9)
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The momentum equation can be derived in the same way. The derivation is due to the nine 

viscous stress components (τij with i, j = x, y, z – every time the viscous stress in j direction, on a 

plane, vertical to i, as shown in Illustration 4) and pressure, quite long and won't be part of this 

thesis. The pressure is a normal stress and denoted with p. 

Equation (10) shows the three dimensional momentum equation exemplarily for the x direction.


Du

Dt
=
∂−pxx

∂ x

∂ yx

∂ y

∂zx

∂ z
SMx  (10)

SMx represents  the  source  terms,  that  are  of  volumetric  nature,  like  e.g.  the  weight  or 

electromagnetic  forces.  For  Newtonian  fluids,  with  a  linear  correlation  between  the  viscous 

stress τ and linear or volumetric deformation, the Navier-Stokes equations can be derived. Due to 

the fact  that  it  is  the base for all  further  calculations,  it  will  be shown here briefly.   Under 

consideration of the linear correlation, the momentum equation for the x direction can be written 

as shown in Equation (11).


Du

Dt
=−

∂ p

∂ x
 ∂
∂ x 2 ∂u

∂ x
div u ∂

∂ y [ ∂u

∂ y

∂ v

∂ x ] ∂
∂ z [ ∂u

∂ z

∂w

∂ x ]SMx  (11)
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Illustration 4: stress components on three faces of a fluid element



The dynamic viscosity  μ relates stresses to linear deformation and the kinetic viscosity relates 

stresses  to  the  volumetric  transformation.  The  latter  is  approximated  to  =−
2

3
  [3].  In 

(incompressible)  fluids,  volumetric  deformation  doesn't  occur.  By adding the less  influential 

terms to the momentum source term, Equation (11) can be simplified as shown in Equation (12).

∂
∂ x 2 ∂u

∂ x
div u ∂

∂ y [ ∂ u

∂ y

∂v

∂ x ] ∂
∂ z [∂ u

∂ z

∂w

∂ x ]SMx=div grad uS 'Mx

S 'Mx=SMx
∂
∂ x

divu[ ∂∂ x  ∂ u

∂ x  ∂
∂ y  ∂ v

∂ x  ∂
∂ z  ∂w

∂ x ]  

(12)

Applying the conservation of mass allows to write the term  
Du

Dt
 as  

∂ u
∂ t

div uu  and 

therefore the Navier-Stokes equation as shown in equation (13).


∂u

∂ t
div uu=div  gradu S ' Mx−

∂ p

∂ x   (13)

 

It is the so-called transport equation and and can be used to describe all fluid dynamic equations.  

Equation  (14)  shows  it  in  a  more  general  form.  The  pressure  term  is  independent  of  the 

parameter Φ and can therefore be added to the source term. 

∂

∂ t
Accumulation

div u
Convection

=div T grad
Diffusion

 S
Source

 (14)

So if further the diffusion coefficient T is mentioned, it doesn't necessarily mean, that it is a 

fluid-fluid diffusion coefficient. It can depending on the parameter  Φ, either be the viscosity μ 

(in case of the momentum equation) or the thermal conductivity (in case of the energy equation). 

This has the huge advantage,  that all  parameters can be treated in the same way during the 

discretization process.
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2.2. The finite volume method

After deriving the necessary equations, they still need to be discreticed for numerical solution. 

So far the equations have been stated in their differential form and can be solved by integrating 

over a finite control volume. This is the main feature of the finite volume method. Equation (15) 

shows Equation (14) in its integral form.

∫
CV

∂

∂ t
dV∫

CV

div udV =∫
CV

div T graddV∫
CV

SdV  (15)

By using Gauss'  divergence theorem, the terms can be rewritten as integrals  over the entire 

bounding surface of the control volume. This means, that the accumulation of a component in a 

volume will be written as the flow through the bounding surface of the control volume, as shown 

in Equation (16). 

∫
CV

div v dV =∫
A

n⋅v dA  (16)

n⋅v describes the component of vector  v in the direction of the vector  n normal to the surface 

element dA. By meshing a fluid (dividing it into control volumes of known size and shape), the 

volume integrals can be easily solved by summation over the surface elements. Equation (17) 

shows the result of applying Gauss divergence theorem to equation (15).

∂
∂ t ∫CV

dV ∫A n⋅udA=∫
A

n⋅T graddA∫
CV

SdV  (17)

In steady state conditions, Equation (17) can be reduced to the source term, the diffusion term 

and the convection term (Equation (18)). Time dependent problems can be solved by integrating 

the time over a small interval Δt  as shown in Equation (19). 

∫
A

n⋅udA=∫
A

n⋅T graddA∫
CV

SdV  (18)
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∫
t

∂
∂ t ∫CV

dV dt∫
 t

∫
A

n⋅udA dt=∫
t

∫
A

n⋅T graddA dt∫
 t

∫
A

SdV dt  (19)

A small example is going to show the numerical solution to a stationary, incompressible system, 

without a source term and with spatial discretization in a one dimensional case. The transport 

and continuity equations apply:


∂

∂ t
divu=divT gradS  and div u=0 (20)

And become:

∂
∂ x

u= ∂
∂ x T ∂

∂ x    and 
∂
∂ x

u=0 (21)

Illustration  5 shows  the  one  dimensional  control  volume  with  the  general  node  P,  the 

neighbouring nodes W and E and the control volume faces w and e. Equation (22) shows the 

integrals, after using Gauss' divergence theorem around the node P.

∫
CV

∂
∂ x

udV=∫
A

n⋅udA=u Ae−u Aw  

∫
CV

∂
∂ x

T ∂
∂ x

dV =∫
A

n⋅T
∂
∂ x

dA=TA
∂
∂ x


e

−TA
∂
∂ x


w

∫
CV

∂
∂ x

udV=∫
A

n⋅udA=u Ae−u Aw=0

(22)
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Illustration 5: 1D control volume around a node P

δxwP δxPe

uw ue

δxwe
W w e E

P



As a simplification, the convective terms will be abbreviated with F and the diffusion terms with 

D:

Fw=uw Fe=ue Dw=
T w

δxwP

De=
T e

δxPe

((23)

Averaging (called central differencing) gives the results shown in Equation (24). As finding an 

exact solution is impossible for most real systems, numerical approximations have to be applied. 

Discretisation methods transform continuous problems into problems which have to be solved on 

discrete points only.

e=
EP

2
 w=

WP

2 ∂∂ x 
e

=
E−P

δ PE
∂∂ x 

w

=
P−W

δWP

Fee−Fw w=DeE−P−Dw P−W 

(24)

Substituting the above expressions and identifying the coefficients as aW and aE leads to equation 

(25).

aPP=aWWaEE  (25)

With  aW=DW
FW

2
,  aE=DE

F E

2
 and  aP=aWaEFe−Fw .  The  advantage  of  this 

factorization shown in Equation (25) is, that it offers the possibility to change the discretization, 

by simply changing the components aW, aE and aP.
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2.3. The SIMPLE algorithm

The equations mentioned above assume, that the velocity field is either well known or defined. 

This is usually not the case and because of the fact, that it is often hard to couple the pressure 

and the fluid velocity, they have to be solved iteratively.

To simulate the fluid flow around the dune the SIMPLE algorithm is used. It is included in the 

simpleFOAM solver, which can be used for steady-state cases with incompressible, turbulent 

flow. The acronym stems from Semi-Implicit Method for Pressure-Linked Equations and was 

introduced by Suhas Patankar and Brian Spalding in 1972. It is perhaps the oldest and most 

widely used iterative method for the stationary Navier-Stokes equation [4].

The  SIMPLE  algorithm is  a  predictor-corrector  procedure  to  solve  the  discrete  momentum 

Equation  (26).  Illustration  6 explains  the  subscripts  in  Equation  (26),  nb refers  to  the 

neighbouring nodes. In the numbering the system neighbours in E, W, N and S direction in the 

summation ∑ anb⋅unb  are (i - 1, J), (i + 1, J), (i, J + 1) and (i, J-1). For the sake of simplicity, the  

cardinal points are used as a reference in all further equations.

ai , J⋅ui ,J=∑
nb

a⋅upI−1, J−pi , J
pressure forces

⋅Ai , J bi , J
other sources

 (26)
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Illustration 6: A u-control volume and its neighbouring velocity components

I + 1, J

J + 1

j + 1

J

j

J - 1

I - 2 i - 1 I - 1 i I i + 1 I + 1

PwW e E

u
i,J

u
i, J + 1

u
i, J - 1

n

N

s

S

I – 1, J I, J



A is the cross-sectional area of the control volume face and a is the diffusive transfer coefficient, 

which is defined as shown in Equation (27), with Γ being the interface diffusion coefficient and 

Sp the source. 

aW=
W

 xWP
⋅AW , aE=

 E

 xPE
⋅AP , aP=aWaE−SP  (27)

 

At first Equation (26) is solved with the current pressure. With Equation (28) the changes in the 

velocity  u are  being  related  to  the  changes  in  the  pressure  p.   The  pressure  and  velocity 

correction are being referred to, as p
l  and u

l . Due to the fact, that in the converged solution all 

correction  will  be  zero,  Equation  (28) can be  simplified to  Equation  (29) by neglecting the

∑ anb⋅u 'nb term.  To neglect this term is common practice in the SIMPLE algorithm and is is 

apart from the reason mentioned above hard to justify. It is the main reason why the resulting 

method does not converge very rapidly. A more gentle way would be to approximate the last 

term in the pressure equation. This is done in the SIMPLEC algorithm [5]. Another variation is 

the PISO (Pressure Implicit with Splitting of Operators) algorithm which can be used to solve 

the Navier-Stoke equation in unsteady problems. The main difference to the SIMPLE algorithm 

is, that the momentum correction step is performed more than once.

uP

l =
∑ anb⋅u' nb

aP

d p p 'w−p ' e , d p=
A

ap

 (28)

u ' P≈d pp ' w−p 'e   (29)

Next the mass conservation is applied to a control volume centred on the pressure node. The net 

mass flux results from the current (u∗) plus the correction (u') velocity fields:

∑
faces

un

∗⋅A∑
faces

u 'n⋅A=0  (30)

i.e.

u' A e−u' A w...=−ṁ∗
 (31)

Writing  Equation  (31) in  terms  of  the  pressure  correction  results  in  Equation  (32).  With 
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aE=u Ae … and aP=∑ aF , it can be simplified to Equation (33).

u A e  p ' P−p ' E−u Aw  p 'W−p ' P...=−ṁ
∗

 (32)

aP p 'P−∑
F

aF p'F=−ṁ∗

 (33)

Due to the fact that Equation  (33) has precisely the same form, as the linearized, discretized 

scalar equation, the same solvers can be used. Afterwards the pressure and velocity have to be 

corrected, as shown in Equation (34).

pP pP
∗p 'P

uP up

∗d p p 'w−p ' e
 (34)
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2.4. OpenFOAM

The name OpenFOAM stems from “Open Field Operation and Manipulation” it is a C++ library, 

which supplies utilities and solvers to perform data manipulation and solve specific problems in 

continuum mechanics. Examples of these processes include but are not limited to fluid flows 

with  or  without  chemical  reactions,  turbulence  modeling  and heat  transfer,  as  well  as  solid 

dynamics, electromagnetics and the pricing of financial options. 

It offers users with a basic knowledge in C++ programming and object-orientation to write their 

own  solvers  or  modify  existing  ones.  Illustration  7 shows  an  overview  of  the  OpenFoam 

structure. It supplies numerical solvers, as well as pre- and post-processing utilities.

Illustration 7: Overview of the OpenFOAM structure [OpenFOAM User Guide (2011)]

The main difference to other cfd toolboxes is, that it is released under the GNU General Public 

License and completely open source and freely available. 

Illustration  8 shows the  basic  directory  structure  to  build  an  OpenFOAM case.  The system 

directory contains at least three files. First of all the controlDict file in which for example the 

start and end time, as well as the time steps and data output are defined. It also contains the 

fvSchemes file,  in  which the discretisation schemes mentioned in the theory chapter can be 

found. Usually the standard Gaussian finite volume integration is the common choice. It is based 

on summing values on cell faces, which must be interpolated from cell centres. Other options are 

for  example  “leastSquares”  or  “fourth”.  The third  file  is  the  fvSolution  file,  it  contains  for 

example the equation solvers and tolerances.  

The constant directory contains information, concerning the mesh in the polyMesh sub-directory 

and specified physical properties. Before starting a case, a time folder has to be created, named 
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after the start time defined in the controlDict file (usually 0). It has to include initial values and 

boundary conditions. OpenFoam then writes the results to files into folders named after the time.

2.4.1. The simpleFOAM solver

The SIMPLE algorithm is implemented in the simpleFOAM solver, which can be found in the 

$FOAM_SOLVERS/applications/solvers/incompressible/simpleFoam/simpleFOAM.C  file.  The 

assumption, that the dune simulation is incompressible is valid, because the occurring pressure 

gradient is very small and can therefore be neglected. It  solves the Navier Stoke eqaution in an 

iterative procedure and basically undergoes the following steps: 

1. Set the boundary conditions. 

2. Solve the discretized momentum predictor. 

3. Compute the cell face fluxes. 

4. Solve the pressure equation and apply under-relaxation

5. Correct and adjust the values at the cell faces. 

6. Correct the velocities on the basis of the new pressure field. 

7. Update the boundary conditions 

8. Repeat, until the convergence criteria are satisfied 
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Illustration 8: Case directory structure [OpenFOAM User Guide (2011)]



As shown in Listing 1 the simple loop is implemented as a while-loop. It either ends, when the 

given run time or a specified convergence criteria is reached or the solver diverges. 

In  line 55 the pressure calculated at  the previous  iteration is  being stored.  In the beginning 

UEqn.H defines the equation for U and then under-relaxes the velocity. This helps to improve the 

stability, by limiting the amount of change a variable undergoes from one iteration to the next. 

The specifications can be given in the fvSolution file, which can be found in the “system” folder 

of  the  case.  Afterwards  the  momentum  predictor  is  being  solved.  In  the  pEqn.H  file,  the 

boundary conditions for p are updated, then the diffusive transfer coefficient ap and the velocity 

are calculated. Afterwards the flux is calculated. After defining and solving the pressure equation 

repeatedly for the number of times defined in the “fvSolution” file, it is being corrected. Then 

the continuity errors are calculated and the pressure is under-relaxed for the momentum corrector 

and, if need corrected. Back in listing 1 the convergence is being checked and repeated until the 

specified convergence criteria are satisfied.

Listing 1: SIMPLE loop in simpleFOAM

51      Info<< "\nStarting time loop\n" << endl;  

52      while (simple.loop()) 

53     { 

54         Info<< "Time = " << runTime.timeName() << nl << endl; 

55         p.storePrevIter(); 

56         // --- Pressure-velocity SIMPLE corrector 

57         { 

58             #include "UEqn.H" 

59             #include "pEqn.H" 

60         } 

61         turbulence->correct(); 

62         runTime.write(); 

63         Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" 

64             << "  ClockTime = " << runTime.elapsedClockTime() << " s" 

65             << nl << endl; 

66     }

67     Info<< "End\n" << endl; 
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2.4.2. The pimpleFOAM solver

As the simpleFoam solver, doesn't converge with the given geometry, the starting parameters 

will be taken from a transient solver. It uses the PIMPLE algorithm, which is merged from the 

PISO and SIMPLE algorithm. Like the SIMPLE algorithm, the PISO algorithm neglects the 

velocity correction in the first step, but will calculate it later using the first velocity correction, 

which leads to additional corrections for the pressure [6].
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3. Modelling the wind flow around a two dimensional 
dune

3.1. The geometry

To validate the results of the simulation, they are compared to a study by Giles F.S. Wiggs et al. 

(1996). They suggest, that surface shear stresses are induced by streamwise acceleration as well 

as streamline curvature. To prove this theory, they took field measurements on an unvegetated 

about 10 meter high barchan dune and compared them with measurements of a 1:2000 scale 

fixed model in a wind tunnel.  

Illustration 9 displays the centre line of the dune used in this studies.  Illustration 10 shows the 

corresponding geometry created with blockMesh, which is a mesh generating utility supplied by 

OpenFOAM. It generates the mesh from the input specified in the  blockMeshDict dictionary, 

which is located in the <case>/constant/polyMesh folder. Furthermore, cells, faces and patches 

are created. A patch includes one or more areas of the boundary surface, that do not necessarily 

have to be physically connected. The geometry has to be generated in three dimensions, because 

OpenFOAM operates in  a  three dimensional  Cartesian coordinate system. By specifying the 

boundary condition for the front  and back plane,  referred to by the patch “defaultFaces” as 

“empty” means, that no solution for the third dimension is required.

-18-Illustration 10: Geometry and patches (blue) displayed in ParaView, created with blockMesh

Illustration 9: Dune center line of the dune used by Wiggs et al. (1996)
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3.1.1. Mesh generation in OpenFOAM

To create a mesh with  blockMesh the geometry is manually decomposed into a set of one or 

more hexahedral blocks. Edges of the blocks can be lines, arcs or splines. To refine the mesh a 

number of cells in each direction of the block can be adapted. Illustrations 11-13 show different 

graded meshes created with blockMesh.

Illustration 13: Fine graded mesh created with blockMesh

The fine graded mesh created with blockMesh contains 17.500 hexahedra cells, compared to 

12500 cells for the medium graded mesh and 7200 for the coarse mesh.

To compare not only the solver, but also different types of meshing tools, another OpenFOAM 

utility  called  snappyHexMesh is  used.  It  creates  meshes  containing  hexahedra  and  split-

hexahedra  geometries.  In  order  to  get  the  Stereolithography (*.stl)  file  that  snappyHexMesh 

needs, yet an other OpenFOAM utility, called surfaceMeshTriangulate is being used. It converts 
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Illustration 11: Coarse mesh created with blockMesh

Illustration 12: Medium graded mesh created with blockMesh

Illustration 14: Fine graded Mesh created with snappyHexMesh



the  outside  of  the  mesh  created  with  blockMesh to  a  surface  file.  To  create  a  mesh  in 

snappyHexMesh a dictionary is needed. The  snappyHexMeshDict can be found in the system 

sub-directory of the case. Illustration  14 shows, that the turbulence region behind the dune is 

refined with the code shown in  Listing  2.  The type  “searchableBox” defines  a  region by a 

bounding box. 

Listing 2: Excerpt from snappyHexMeshDict

38  //Refine at the downwind slope

39  refineDune 

40    { 

41        type searchableBox; 

42        min (105 0 -5); 

43        max (145 10 5); 

44   }

The  cell  splitting  is  also  done  according  to  the  snappyHexMeshDict in  the 

castellatedMeshControls sub-dictionary. A detailed explanation can be found in the OpenFOAM 

User  Guide,  supplied  by  the  OpenFOAM Foundation,  in  Chapter  5.4.  The  mesh  shown in 

Illustration 14 consits of 35608 hexahedra, 739 prism and 2661 polyhedra cells.

3.2. The boundary conditions

In OpenFOAM the boundary conditions can be found in the “startTime” folder, which is defined 

in  the  controlDict  file  (usually  <caseDIR>/0).  The boundary conditions for  the velocity  are 

shown in  table  1.  The  most  common  boundary  conditions  are  either  fixed  values  or  fixed 

gradient. If a variable is specified with a value on a boundary patch, it is a Dirichlet boundary 

condition and referred to as “fixed value”. If a gradient is defined at the patch, then it is called  

Neumann boundary condition and referred to as “fixed gradient”. 
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patch boundary value 
[m/s]

Meaning of the boundary condition

inlet

outlet
freestream (8 0 0)

If the flow is going outside the boundary it will be locally 
“zeroGradient” (normal gradient of Φ is zero), if it is going 
to the inside the the boundary it will be locally “fixedValue” 
(Normal value of Φ is specified with (8 0 0)).

bottom fixedValue (0 0 0) The velocity at the wall is zero.

top inletOutlet (8 0 0)

Switches the velocity and pressure between  fixedValue and 
zeroGradient depending  on  direction  of  the  velocity.  All 
fields are initialized as an inlet flow with a fixed value of (8 
0 0) m/s. If the pressure forces the fluid flow outward at any 
part  of  the  boundary,  this  specific  facet  ist  treaded as  an 
outlet, hence has zero gradient. This prevents an unnatural 
pressure build-up and acts like a driven free flow direction.

defaultFaces empty --- The geometry will be treated as two dimensional.

Table 1: Boundary conditions for the velocity

Sadly no information concerning the approximate wind speed is given in the paper. So it is set to 

8 m/s which is about 28.8 km/h or 15.55 knots. Table 2 shows the boundary conditions for the 

pressure. The unit is [m2/s2], because OpenFOAM uses the specific pressure, which is p/ρ.

patch boundary value 
[m2/s2]

Meaning of the boundary condition

inlet

top
fixedValue

uniform 
1.13e5

The value of  Φ is 1.15⋅10
5
m

2/s2

bottom

outlet
zeroGradient --- The fluid gradient at the wall is zero.

defaultFaces symmetryPlane --- The geometry will be treated as two dimensional.

Table 2: Boundary conditions for the pressure
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3.3. The turbulence model

Turbulence is a flow regime, which is highly irregular. It is the most commonly occurring flow 

state and is maintained by shear in the mean flow. A huge amount of research is dedicated to the 

development of numerical methods to better understand turbulence. 

There are three main groups of methods, Reynolds-averaged Navier-Stokes equations (RANS), 

large eddy simulations (LES) and direct numerical simulations (DNS). In this introduction, we 

are mainly focusing on the turbulence models for Reynolds-averaged Navier-Stokes equations. 

The Navier-Stokes equation is time-averaged prior to the application of numerical methods. This 

adds  extra  terms  to  the  flow  equations,  due  to  the  interaction  between  various  turbulence 

fluctations. Those turbulent fluctuations can be described implicitly using different modelling 

approaches - the so called turbulence models. The best known one is the k-ε model. It is being 

used in this case. The model assumes, that the turbulent viscosity μ is isotropic. Even though this 

results in it not performing very well in cases of large adverse pressure gradients, it can be used 

in this case.

Instead of the one equation  Spalart-Allmaras  model, that was used before in the “airFoil2D” 

OpenFoam tutorial (which is used as a basis for this case), two transport equations have to be 

solved. One for the turbulent kinetic energy  k and another one for the rate of dissipation of 

turbulent kinetic energy ε [7]. While ε determines the scale of the turbulence,  k determines the 

energy of the turbulence. To estimate k and ε, Equations (35) and (36) can be applied. With U 

being the mean velocity, which is estimated to be 8 m/s and  I being the turbulence intensity, 

which is estimated to 1% of the mesh inlet height [7].

k=
3

2
U⋅I 2  (35)

Cμ is a turbulence model constant and is usually taken as C=0,09 and l is the turbulence length 

scale and will be approximated with 2%.

=C

k
3
2

l
 (36)
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Applying these changes is done by adding the boundary conditions for k and ε to the “0” folder 

of the case, changing the “RASModel” in the “RASProperties” file to “kepsilon” and adjusting 

the “fvSchemes” and “fvSolution” files.

patch boundary value 
[m2/s2]

Meaning of the boundary condition

inlet

top

outlet

inletOutlet
uniform 
8.64

Switches  between  fixedValue  and  zeroGradient 
depending on direction of the velocity.

bottom kqRWallFunction
uniform 
0

Special turbulent wall treatment

defaultFaces symmetryPlane --- The geometry will be treated as two dimensional.

Table 3: Boundary conditions for k

The boundary conditions for epsilon are identical, with the exception that the uniform value for 

the inlet, outlet and top is 13.17 and the bottom patch is epsilonWallFunctions.

In turbulent modelling theory flows far away from solid walls are almost only inertia dominated, 

whereas near walls viscous effects are important. 

Those effects are described using correlation equations - the so called "wall functions" - which 

incorporate different model and wall parameters.  In the k-epsilon model the treatment of wall 

functions depends on the local Reynolds number.
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Illustration 15: Velocity distribution near a solid wall [Schlichting, H. (1979)]



3.4. Results

In the paper G. F. S. Wiggs normalized the velocity data by measurements at a reference station, 

positioned 50 m upwind of the toe on the centre line.  Equation (37) shows the calculation for the 

fractional speed-up ratio (δs) as used by Jackson and Hunt (1975).

s=
uy−U y

U y

 (37)

uy is the velocity at a height y on the dune and Uy is measured at the same height at a reference 

station. Using Equation (37), flow acceleration occurs at fractions, so a δs of 0.28 indicates an 

acceleration compared to upwind values at the same height of 28% [8]. 

Wiggs  noticed  a  reduction  in  near-surface  wind  velocity,  which  is  succeeded  by a  uniform 

increase in wind speed to a maximum near the crest. According to the paper [8] the wind speed is 

greatest  at  y  =  1m with  δs  =  0.39  as  shown  in  Illustration  16.  This  is  in  contrast  to  the 

acceleration at 0.25 m height, where δs is only 0.27-0.28 [8].  

In order to quickly compare the simulation data, it is sampled using a list of points, at the same 

height as used in the paper. This is done using the sample utility supplied by OpenFOAM, by 

specifying the case through a sampleDict in the case system directory. Then, using Equation 

(37), the fractional speed-up ratio is calculated. The results can be found in Illustrations 17-19.
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Illustration 16: Field measured fractional speed-up ratio [Wiggs (1996)]
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A variance in the results of the different graded meshes is clearly visible, the number of jumps in 

the graph increases depending on how close the values are taken to the surface and on how 

coarse the mesh is. They can be noticed especially at inflexion points in the dune geometry. This 

happens because in coarser graded meshes, the gradient or rather the fluctuations in speed do 

also occur higher above the geometry.  Locally the mass balance has to apply in every cell, so 

that in a coarser mesh, irregularities will propagate more throughout the flow region.

The  trend  between  the  paper  and  the  simulation  shows  a  strong  correlation.  Though  the 

fractional increase in speed is lower, the maxima are about the same and the same tendencies can 

clearly be seen. The slower increase could be due to inaccurate turbulence parameters, which 

make the air seem more viscous than it actually is.  Furthermore, the wind speed is not known 

and could have an significant effect on the speed-up. Another reason could be, that the geometry 

is treated as a two dimensional case, even though the measurement were obviously taken in three 

dimensions.

Illustration 17: Fractional speed-up ration for a coarse graded mesh blockMesh
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Illustration 18: Fractional speed-up ratio for a medium graded mesh in blockMesh
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Illustration 19: Fractional speed-up ratio for a fine graded mesh in blockMesh
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Illustration 20: Fractional speed-up ratio for a fine graded mesh created in snappyHexMesh
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Illustration 21: Comparison of the different mesh types at 0.25 meters
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Illustration  20 shows  the  fractional  speed-up  ratio  for  a  fine  graded  mesh  created  in 

snappyHexMesh (Illustration 14). It strongly resembles the coarse mesh created in blockMesh. 

This suggests, that the geometry has to be refined further along the dune. Illustration 21 shows 

the comparison of the different meshes sampled at a height of 0.25 meters.  Further refinement 

won't be part of this thesis, because the simulation time of the mesh created with snappHexMesh 

is approximately 120 times higher than using the optimized 2D blockMesh. Creating a mesh in 

snappyHexMesh only makes sense for more complex three dimensional cases. 

Illustration 22 shows the overall velocity profile of the fine graded mesh created in blockMesh. 

The speed maximum is at the peak of the dune with about U=11.76 m/s. An eddy is formed 

behind the dune.

Overall the simulation gave good results and can be used, with further adjustments, for example 

by changing the turbulence parameters. 

-28-

Illustration 22: Velocity profile of the fine graded dune created in blockMesh



4. Modelling the wind flow around a three dimensional 
dune

4.1. The geometry

In the paper “The role of streamline curvature in sand dune dynamics“ from 1996, G. Wiggs 

does not give any information about the total length of the dune. Instead the position of the study 

site  in  Oman  is  given.  Illustration  23 shows  a  satellite  picture  of  the  location.  With  this 

information, the three dimensional dune shown in Illustration  24 is created. To do so an other 

free, open-source software named SALOME2 is used. It offers pre- and post-processing tools for 

numerical simulations.  The length of the dune is  assumed to be 165 meters,  with the given 

distance from crest to toe of 86 meters and a width of 130 meters between the two horns.

The same centre line, that is already used in the two dimensional case is applied to make a direct 

comparison possible. In order to extract it from the mesh created with blockMesh fifteen points 

from the dune windward side are sampled and then transferred into SALOME. 

2 http://www.salome-platform.org/
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Illustration 23: Satellite picture of the study side in Oman showing sand dunes



4.1.1. The mesh

The  Mesh  is  created  in  SALOME using  the  Netgen  1D-2D-3D algorithm.  NETGEN is  an 

automatic  3D  tetrahedral  mesh  generator.  A tetrahedron  is  a  polyhedron  formed  by  four 

triangular faces, with three faces meeting at each vertex. Illustration 25 shows a comparison of 

tetrahedral and hexahedral cells in two and three dimensions. 

The mesh created in SALOME is unstructured, as shown in Illustration  26. The possibility to 
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Illustration 24: Three dimensional dune used in the simulations

Illustration 25: Comparison of tetrahedral and hexahedral cells
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account for pertinent flow features is not offered, meaning that it is not possible to automatically 

create  a  mesh  with  a  higher  resolution  close  to  the  bottom.  The  mesh  consists  of  401,002 

tetrahedral cells,  which is  close to  the limit  set  in  Salome of 500000 elements.  So it  is  not 

possible to capture all relevant flow features above the dune (there are not enough cells in y-

direction). The maximum skewness of 0.6 is acceptable, it should be smaller then 0.8 to get good 

results. It is important to check the skewness, because it can have a huge impact on the accuracy 

and  robustness  of  the  CFD  solution.  The  skewness  for  tetrahedral  and  triangular  cells  is 

calculated as shown in Equation (38).

skew=
optimal cell size -cell size

optimal cell size
 (38)

To convert the Salome mesh into a FOAM mesh, the ideasUnvToFoam command is used. To 

prove the theory,  that  comparing the cell  count,  hexahedral  meshes  will  give more accurate 

solutions, the mesh is converted to a hexahedral mesh with snappyHexMesh. This theory should 

especially apply if the grid lines are aligned with the flow. 
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Illustration 26: Mesh created in SALOME



Illustration 27 shows the mesh created in snappyHexMesh. The two dimensional case has shown 

the necessity to use a small cell size above the dune to get good results. The mesh is created 

accordingly. It consist of 340818 hexahedral and 9361 polyhedral cells. 

The skewness of about 0.3 is pretty good.  For a hexahedral or quadrilateral cell it is calculated 

by considering the deviation from the minimum or maximum angle compared to the right angle 

as shown in Equation (39).

skew=max [ max−90

90
,
min−90

90 ]  (39)

Illustration 28 shows a comparison between an optimal and a skewed cell for the two different 

cell types.  
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Illustration 28: Comparison between an optimal and a skewed cell

Illustration 27: 3D mesh created with snappyHexMesh
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4.2. The boundary conditions and turbulence model

In the three dimensional case, the same boundary conditions and the same turbulence model are 

chosen as in in the two dimensional case. 

The only  difference is,  that  the  defaultFaces patch  is  defined as  symmetryPlane and  not  as 

empty. This suggests, that the domain is infinite in z direction and that the boundary has no 

influence on the case.

4.3. Results

Again, in order to quickly compare the simulated data, it is sampled using a list of point, at the 

same height,  as used in the paper.  Then using Equation (37) the fractional speed-up ratio is 

calculated. Illustration  29 clearly shows the difference in quality between the tetrahedral mesh 

created with the NETGEN algorithm and the hexahedral mesh created with snappyHexMesh.

-33-

Illustration 29: Comparison of a fractional speed-up ratio of a tetrahedral and hexahedral  
mesh
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The speed-up ratio sampled from the snappyHexMesh mesh follows a clear trend, while the 

trend  sampled  from the  tetrahedral  mesh is  interrupted  by  various  jumps.  The difference  is 

mainly, because there are not enough cells in y direction of the mesh created with the NETGEN 

algorithm. 

Illustration 30 shows a comparison between the speed up ratio of the two and three dimensional 

cases  created  with hexahedral  meshes.  All  four graphs show the same tendency,  by slightly 

decreasing in the beginning of the dune. Afterwards they follow an upward trend. Starting with a 

significant  increase,  then  reaching  a  plateau  between  about  75  and  100  meters.  Afterwards 

increasing again and reaching a peak at the peak of the dune. 

It  has to be noted, that the second increase after hitting the plateau can't be found in the original 

paper. This could be because the centre line given in the paper, isn't an accurate representation of 

the actual dune. 
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Illustration 30: Comparison of a fractional speed-up ratio of a 2D and 3D hexahedral mesh
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5. Simulating particles 

The first pioneers in the field of fluid-particle interaction were Sir Isaac Newton (1642-1727) 

and Jean le Rond d'Alembert (1717-1783). Though it has a fairly long history, the appliance to 

numerical  simulation is  fairly  new. With the OpenFOAM version 2.0.0 (16th June 2011) the 

discrete element method (DEM) has been introduced. It is very interesting for simulating the 

stresses and displacements in a volume containing a large number of particles. This offers the 

possibility  to  solve  the  averaged  Navier-Stokes  equation  using  the  Finite  Volume  Method 

(FVM),  as  shown in  this  thesis  and  the  solid  sand  phase  using  the  DEM.  A coupling  and 

improvement is attempted by various researchers around the world.

A coupling is already archived in an other open source package called CFDEM3 developed by 

Christoph Goniva (JKU Linz). It can be integrated into OpenFOAM, but seems to have problems 

with the latest version (v2.1.0) due to incompatibility with the engine Search model. 

Though  it  is  possible  to  combine  FVM  and  DEM,  the  approach  is  not  very  practical  for 

simulating sand dunes, because they consist of an enormous amount of particles. An other more 

practical approach would to tread them as fluidized models.

3 http://web678.public1.linz.at/Drupal/
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6. Fluidized models 

Generally speaking a fluidized model is a  fluid-solid mixture that shows fluid-like properties. 

The process of fluidization occurs when a fluid is passed through a quantity of a solid particle 

substance, for example in a bed reactor. 

6.1. Surface tracking

The name surface tracking refers to a case with a separate mesh for each phase, which obtains its 

motion from the boundary conditions. OpenFOAM includes multiple solvers that offer surface 

tracking methods, for example the interFoam solver. It can be used for two incompressible fluids 

and  offers  for  example  the  possibility  to  model  the  turbulence  with  the  Reynolds  averaged 

model, that has already been introduced in the turbulence model of the two dimensional case. In 

the interDymFoam solver a tool is added, that allows to refine the mesh dynamically. Illustration 

31 shows different types of rheological models. While the fluid can be treated as Newtonian, this 

is not possible for the sand dune. 

Herschel-Bulkley fluids as well as Bingham fluids require a certain minimum amount of stress 

before  they  start  to  flow.  They  are  defined  by  the  consistency,  which  is  a  constant  of 

proportionality, the flow index, which measures the degree to which the fluid is shear-thinning or 

shear-thickening and the shear stress. Sadly those constants have proven to be difficult to find. 
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6.2. Dispersed models

OpenFOAM includes an Eularian two-phase solver for transient simulations of a fluidized bed. 

Instead of tracking the motion and computing the rates of change of conserved properties for 

collections of fluid particles as in the Lagrangian approach it is making up a region fixed in 

space  for  collections  of  fluid elements  [1].  The twoPhaseEulerFoam solver  can  be  used for 

incompressible  two-phase turbulent  flows.   It  offers  models  for  two alternatives  to  simulate 

particle-particle interaction.  

7. Conclusion

The approach to simulate the sand particles is not yet practical and trying to simulate the dune as 

a fluidized model has shown, that quite a few constants are unknown. 

OpenFOAM has proven to be a very potential tool, when it comes to the simulation of fluids. 

Whereby the design and construction of a  quality grid is  crucial  to the success  of the CFD 

analysis. The results of the wind flow simulation for the two and three dimensional cases have 

shown, that the simpleFOAM solver gives good and reliable results, after taking the boundaries 

from a transient solver. 

In future works the flow over more complex dune structure could be validated, for example of 

two dunes lying close to each other. The work could also be extended for aqueous dunes or 

different aeolian dune shapes. 

As soon as the fluid-particle coupling is more advanced, it could be applied to simulate the sand-

wind interaction at least at the surface of the dune. 
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8. Sources

8.1. Images 

[1] N.J. Balmforth (2001), Geomorphological Fluid Mechanics, Berlin: Springer-Verlag , page 

414

[2] H.K. Versteeg & W.Malalasekera (2007): An introduction to computational fluid dynamics, 

Upper Saddle River: Pearson - Prentice Hall, second edition, page 10

[3] H.K. Versteeg & W.Malalasekera (2007): An introduction to computational fluid dynamics, 

Upper Saddle River: Pearson - Prentice Hall, second edition, page 11

[5] H.K. Versteeg & W.Malalasekera (2007): An introduction to computational fluid dynamics, 

Upper Saddle River: Pearson - Prentice Hall, second edition, page 135

[6] H.K. Versteeg & W.Malalasekera (1995): An introduction to computational fluid dynamics, 

Upper Saddle River: Pearson - Prentice Hall, first edition, page 140

[9] Wiggs et al. (1996), The role of streamline curvature in sand dune dynamics, page 34
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