ENGINEERING
M  OF ADVANCED
MATERIALS

Periodicity Hubs with Discontinuous Spirals Iin a
Noiseless Duffing Proxy: Experiment and Theory

Achim Sack', Thorsten Poschel’, Erik Lindberg?, Jason A.C. Gallas’

"Institute for Multiscale Simulations, Friedrich-Alexander Universitat Erlangen-Nurnberg
2DTU Elektro Department, 348 Technical University of Denmark, Lyngby

FRIEDRICH-ALEXANL

UNIVERSITAT
ERLANGEN-NURNBERG

Abstract

We report the experimental and numerical observation of discontinuous spirals made of periodic oscillations in the control parameter space of an electronic circuit. Heretofore, only continuous spirals were
known. Discontinuous spirals also whirl around an exceptional focal point, a hub which organizes very regularly the dynamics over wide portions of the parameter space. There is no mathematical theory yet to

predict such hubs and their spirals.

Overview

We found a discontinuous spiral made of periodic
oscillations in the control parameter space of the
electronic circuit shown schematically on the right, which
IS a slight variation of an autonomous Duffing-like proxy
iIntroduced recently [1].

The circuit leads to an autonomous flow:

=y, y=x—x+by—kz, z=w(y—z) 1)

The existence of exceptional points organizing all
oscillations into continuous spirals in the parameter space
was reported a few years ago [2], shortly afterwards, such
hubs were also observed in several other nonlinear
systems such as semiconductor lasers, light-emitting
diodes with optoelectronic feedback, chemical oscillators,
Rossler oscillators, and other paradigmatic flows, e.g. [3].

Our circuit however shows regions of periodic oscillations
In control parameter space which are also organized
around a hub, but form a discontinuous spiral that involve
an infinite alternation of periodicity islands with
terminations looking like boomerangs, cusps and fishes.
To pass from one periodicity island to the next one, it is

Circuit

The circuit on the right illustrates the implementation of Egs. (1) and allows
setting the values of b and k independently by means of digitally controlled
attenuators. For all measurements we fixed w = 0.5. A diode network is
producing the required cubic function (small picture). The operational
amplifiers are fast, precise and of low-noise, the resistors (except the ones
in the diode network) are of low tolerance and low temperature coefficient.
The voltages on the points X and Z in the figure were recorded using a PC
with integrated analog-to-digital converter.

Procedure to record the behavior of the circuit for a given pair of
parameters b and k:

*set b = 0 for about 10 ms to allow any oscillation to decay

* set b, k to the desired values

 wait for 0.2 s to allow transients to die out

* record the voltages X, Z for 0.5 s

* compute a 2D histogram of X, Z with a binning of 500 x 500

* count the number of bins containing non-zero values. They quantify the

occupied fraction of phase-space.

This procedure was repeated for a mesh of equally spaced points in
parameter space. Afterwards the values quantifying the occupied phase-
space were normalized and used to build a heat-map, namely a graphical
representation of the data where the individual values contained in a matrix
of points are represented as colors.
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always necessary to cross the surrounding chaotic phase.

Simulation and Results

As an independent check of the experimental results, we computed a Lyapunov
stability diagram for Eqgs. (1) by solving them numerically using a standard fourth-
order Runge-Kutta algorithm with fixed-step, h = 0.0045, over a mesh of equally
spaced points. The first 70 x 10° time-steps were discarded as due to transient
behavior. Along with the Jacobian of the system, the subsequent 1.4 x 10° time-steps
were used to compute the Lyapunov spectrum of the oscillator. The computation of
high-resolution stability diagrams is numerically a quite demanding task which we
performed on 700 high-performance processors of an SGI Altix cluster with a
theoretical peak performance of 16 Tflops.

(a) Experimental (b) Numerical

Figure (a) shows the normalized heat-map of the experiment with dark blue colors
indicating a low complexity of the waveform and green/red colors implying a chaotic
behavior.

Figure (b) shows a Lyapunov phase diagram illustrating how periodic and chaotic
solutions self-organize over a wide region of the control parameter space. As
indicated by the colorbar, colors represent chaotic phases (i.e. positive Lyapunov
exponents) while darker shadings denote periodic oscillations (negative exponents).
Both figures substantiate excellent agreement found between our experimental
results and simulations.

The small figures below show crops of the experimental data and high resolution
renderings of the numerical Lyapunov phase diagram as denoted by the white boxes

in figure (b). 30
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We observed experimentally and numerically a remarkable family of discontinuous spirals in the control parameter space of an electronic circuit. This shows that periodic oscillations may form either continuous
or discontinuous spirals in stability diagrams. Discontinuous spirals also whirl around an exceptional focal point, a hub which organizes very regularly the dynamics over wide portions of the parameter space.
We remark that there is no mathematical theory yet to predict such hubs and their spirals. We hope the discovery of discontinuous spirals to motivate the investigation of the mathematical conditions underlying
their genesis.
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