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Abstract. Additive manufacturing constitutes a promising production technology with potential application in a broad range
of industrial areas. In this type of manufacturing process, objects are created from powder particles by adding layers of material
upon one another through selectively melting particles from the powder bed. However, understanding the mechanical behavior
of the powder during manufacturing as a function of material properties and particle shape is an essential pre-requisite for
optimizing the production process. Here we develop a numerical tool for modeling the dynamics of powder particles during
additive manufacturing based on force-based simulations by means of the Discrete Element Method (DEM). An existing DEM
software (LIGGGHTS) is extended in order to study the transport of powder particles of complex geometric shapes through
accounting for the boundary conditions inherent to the manufacturing process.
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INTRODUCTION

Additive manufacturing can provide substantial bene�ts
for part production in a wide range of industrial areas
compared to conventional machining [1]. By selectively
melting layers of powder particles (e.g. of metallic [2, 3]
or thermoplastic materials [4, 5]), parts of almost arbi-
trarily complex geometries can be ef�ciently built di-
rectly from a three-dimensional (CAD) model. However,
important open issues remain to be addressed in order
to make this young technology applicable for large-scale
production [1]. In particular, understanding the mechan-
ical behaviour of the powder particles during the manu-
facturing process is essential for developing optimization
routes towards improved part quality and shorter produc-
tion time [4, 6]. Numerical simulations by means of the
Discrete Element Method (DEM) [7, 8, 9, 10, 11, 12, 13]
can provide an useful tool for modeling particle dynam-
ics as a function of material properties and particle shape.
In the present work, we develop a numerical tool,

based on an existing DEM solver [14], for modeling the
dynamics of geometrically complex particles subjected
to dynamic boundary conditions inherent to additive
manufacturing. The purpose of this paper is to present
a description of this numerical tool, thereby highlight-
ing the main modi�cations made in the original DEM for
modeling powder particles of complex shapes. Our sim-
ulations incorporate an improved model for the normal
collisional forces between particles [15], as well as an
analytical calculation of the moment of inertia of com-
plex particles built with the multisphere method. In order
to illustrate our model, we present snapshots of a sim-

ulation of the transport of complex particles in a device
mimicking the one used in additive manufacturing.

MODEL FOR THE POWDER
PARTICLES

In our simulations, powder particles of complex shapes
are modeled as sphere clumps (rigid bodies) using the
multisphere method. Constituent spheres of a rigid body
interact with spheres belonging to neighbouring particles
through viscoelastic forces as we describe below.
Normal forces— During the collision, both particles

undergo a small deformation, ξ , along the axis connect-
ing their centers. The normal force on each particle con-
sists of an elastic term and a dissipative one [13],

Fn =min
(
0,−ρξ 3/2− 3

2
Anρ
√

ξ �ξ
)
en, (1)

where the unit vector en points towards the particle’s
center, and the “min()” function ensures that the force
is always repulsive. In Eq. (1), ρ is de�ned as,

ρ =
2Y
√
Reff

3(1−ν2)
, (2)

where Y is the Young’s modulus, ν is the Poisson’s ra-
tio and Reff = R1R2/(R1+R2) is the so-called effective
radius of the colliding particles (which have respective
radii R1 and R2). Furthermore, the quantity An is the dis-
sipative constant, which depends on elastic and viscous
parameters of the particle’s constituent material. The cor-
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rect modeling of powder behaviour as a function of par-
ticle material requires accurately modeling An as a func-
tion of material parameters. While the dissipative con-
stant is treated as an empiric parameter in most numerical
studies, here we compute An using the analytical expres-
sions for the normal coef�cient of restitution derived in
a recent theoretical study [15]. This study obtained accu-
rate expressions for the coef�cient of restitution (ε) as-
sociated with the normal collision between viscoelastic
spheres as a function of material properties, An and the
precollisional deformation rate (vimp). Using these ex-
pressions and taking the value of ε which is associated
with a given value of vimp as obtained experimentally
(see e.g. Refs. [16, 17, 18]), An can be calculated as a
function of material properties and of the effective mass
meff=m1m2/(m1+m2), wherem1 andm2 are the masses
of the colliding particles [15].
Tangential forces— The tangential force reads [14],

Ft =−min
⎡
⎣μ |Fn|,

∫
path

kt
√
Reffξ ds+At

√
Reffξvt

⎤
⎦et, (3)

where μ is the Coulomb friction coef�cient and kt =
4G/(2−ν) is the “stiffness” of the nonlinear spring as-
sociated with the elastic term of the tangential force,
while the shear modulus, G, follows the equation 2G =
Y/(1+ ν). The elastic term of the tangential force is
calculated by integrating the force increments dF =

kt
√
Reffξds, which are associated with in�nitesimally

small tangential displacements ds = (ds)et, over the to-
tal path covered by the particles during the contact [14].
Furthermore, the second term on the right-hand-side of
Eq. (3) is the tangential damping force, with At and vt =
vtet standing for the tangential dissipative constant and
relative tangential velocity, respectively [11]. The damp-
ing coef�cient At is a parameter of the model, which must
be determined from comparison of numerical simula-
tions with experiments. We choose the value of At in such
a manner that the prefactors which multiply the normal
and tangential deformation rates ( �ξ and vt) in Eqs. (1)
and (3), respectively, have approximately the same order
of magnitude, which gives At ≈ AnY/(1−ν2).

Multisphere method for modeling powder
particles of complex geometric shapes

In order to model the complex geometric shape of
powder particles used in additive manufacturing, we use
the multisphere method, which consists of combining
spheres of different sizes to build a rigid body [7, 19, 20,
21]. Spheres within a rigid body can overlap since they
don’t interact through any interparticle forces. The total
force on the rigid body is computed by summing up the

FIGURE 1. Schematic diagram of the overlap between two
constituent spheres within a rigid body. D is the distance be-
tween the sphere’s centers of radii R1 and R2, whereas t1 and
t2 denote the distances from each sphere’s center to its respec-
tive cap base. Some examples of particles constructed with the
multisphere method in our simulations are shown as insets in
the pictures in the upper and bottom right-hand corners.

forces on all constituent spheres, whereas the resulting
angular momentum of the complex particle is obtained
from the total torque on all spheres with respect to the
body’s center of mass (see e.g. Ref. [19]).
However, one problem with the multisphere method

concerns the calculation of the particle’s moment of iner-
tia [20, 21]. The overlap between spheres results in an ex-
cess (artifactual) contribution to the total moment of iner-
tia of the rigid body, thus leading to incorrect prediction
of its rotational behaviour. One solution for this prob-
lem is to compute the moment of inertia of each com-
plex particle in the system numerically, e.g. using Monte
Carlo [22]. Evidently, this alternative can become com-
putationally too expensive if the system contains a large
number of particles of different shapes. We compute the
mass and the moment of inertia of each complex parti-
cle analytically, by explicitly removing the excess con-
tribution due to the overlap volumes between constituent
spheres. Our calculations are applicable when volume in-
tersections of spheres in a rigid body involve not more
than two spheres.
The amount of sphere-sphere overlap is de�ned by the

distance D between the spheres’ centers (cf Fig. 1). The
contribution of the overlap to the total particle mass and
moment of inertia of the rigid body is computed for all
pairs of constituent spheres (labelled 1 and 2) for which
D < R1 + R2. The mass moverlap of the overlap is the
sum of the respective masses of caps 1 and 2, as de-
picted in Fig. 1. That is, moverlap = mcap1+mcap2, where
mcapk = [ρpπ/3] · [3Rk�2k− �3k

]
, with ρp standing for the

material density, �k = Rk− tk and k = 1,2. Moreover, we
compute the moment of inertia of the overlap volume by
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considering, �rstly, the case where the vectorD= r1−r2
(where rk stands for the center of mass position of sphere
k) is parallel to the z axis (Fig. 1). In this manner, the
moment of inertia tensor of each cap k (Îcapk) is diago-
nal with components given by (see also Ref. [23] which
uses the equations for DEM simulations of pharmaceuti-
cal tablets),

Ixx,capk =
ρpπ
4

[
4R3k�

2
k−
16R2k�

3
k

3
+3Rk�4k−

3
5

�5k

]
+

+mcapk
[(
Loverlap k−Lcentroid k

)2−L2centroid k
]
= Iyy,capk, (4)

Izz,capk =
ρpπ
2

[
4
3
R2k�
3
k−Rk�4k+

1
5

�5k

]
. (5)

In Eq. (4), Lcentroid k is the geometric centroid of cap
k, computed relative to the center of sphere k, while
Loverlap k is the distance between the center of sphere
k and the center of mass of the total overlap volume
comprising caps 1 and 2. The tensor of inertia Îoverlap,z of
the sphere-sphere intersection volume is then given by,
Îoverlap,z = Îcap1+ Îcap2, whereas this equation considers
that D is parallel to the z axis (Fig. 1). The tensor of
inertia Îoverlap for the case in which D makes an angle
ϕ with the z axis reads, Îoverlap = R̂Îoverlap,zR̂−1, where
R̂ is the rotation matrix associated with the rotation of
a vector by an angle ϕ around the axis eD × ez, with
eD = D/|D|.
Using the values of the mass moverlap and tensor of in-
ertia Îoverlap of the sphere-sphere intersections within the
rigid body, we then calculate the body’s total massmbody,
center-of-mass position rcm and inertia tensor Îbody. The
equations for mbody and rcm read,

mbody = ∑Ns
i=1msphere i−∑No

j=1moverlap j, (6)

rcm = m−1body
[
∑Ns
i=1msphere iri−∑No

j=1moverlap jr j
]
, (7)

where Ns (No) is the number of spheres (caps pairs) in
the body, while ri( j) denotes the center-of-mass position
of sphere i (caps pair j). Furthermore, Îbody reads,

Îbody =
Ns
∑
i=1

2
5
msphere iR2i 1̂−

No
∑
j=1
Îoverlap j+ Â, (8)

where Â is the inertia tensor associated with a discrete
distribution of mass elements mk, each representing ei-
ther a sphere or a pair of caps. That is,

Â= ∑ak mk

⎡
⎣ Y

2
k +Z

2
k −XkYk −XkZk

−XkYk X2k +Z
2
k −YkZk

−XkZk −YkZk X2k +Y
2
k

⎤
⎦ , (9)

where ak = 1 (−1) for spheres (caps pairs), while Xk,
Yk and Zk are the distances between the center-of-mass

of element k and the body’s principal axes. The iner-
tia tensor is then diagonalized by performing a principal
axis transformation, whereas the normalized eigenvec-
tors obtained from this transformation yield the orthogo-
nal transformation matrix Ĵ. Using this matrix, a vector
�u in the body’s �xed frame of reference is transformed to
the inertial frame through the equation,�uin = Ĵ�u.
The motion of the rigid body is then computed by

numerically solving the Newton’s equation of motion,
mbodyr̈cm = ∑Nsi=1Fi+mbodyg, where g is gravity and Fi is
the total force on the i-th constituent sphere due to colli-
sions with the device’s walls or with particles belonging
to other rigid bodies. Furthermore, the resultant torqueM
on the rigid body is given by,M= ∑Nsi=1(ri− rcm)×Ft,i,
where Ft,i is the tangential force on the body’s i-th con-
stituent sphere, while the angular velocity of the body,
�ω , evolves according to the Euler equations in the body’s
�xed frame, Î ��ω +�ω× (Î�ω) = Ĵ−1M.

Modeling the boundary conditions for the
powder particles

Our simulations must account for dynamic boundary
conditions which are associated with the transport of the
particles in the device’s complex geometry. By using the
DEM solver of Ref. [14], triangular meshes can be im-
ported and interpreted as frictional walls for the granular
material. In this manner, moving boundaries (walls) of
nearly arbitrary geometric complexity can be modelled
[14]. The forces acting on a particle of mass m1 and ra-
dius R1 upon collision with a wall of the experimental de-
vice are computed using the same model equations listed
above withmeff =m1 and Reff = R1 (which means that, at
the particle-wall contact point, the particle interacts with
an effective “sphere” of in�nite mass and radius) [14].
In Fig. 2 we show snapshots of a simulation of the

transport of particles with complex shapes, built with the
multisphere method, in a device which mimics the ex-
perimental apparatus [2]. The device consists of a rake
for powder application (which moves from left to right
in Fig. 2) and a building tank (central area). This build-
ing tank is �lled with a powder layer which provides
the base for the part to build, and is on top of a verti-
cally adjustable platform. In the simulation of Fig. 2, fric-
tional, vertical walls are placed at the borders of the de-
vice’s platform. The simulation starts by releasing about
6500 particles from a small distance above the surface of
the device’s platform, as shown in Fig. 2a. After falling
due to the action of gravity, particles are transported
into the building tank as the rake moves from left to
right (Fig. 2b-d). With the help of the simulations, sev-
eral questions of relevance for the additive manufactur-
ing process can be addressed, such as the role of particle
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FIGURE 2. Snapshots of a simulation of particles with com-
plex geometric shapes, built with the multisphere method, in
dynamic boundary conditions which mimic the device used in
additive manufacturing.

shape and size distribution for the �owability of the pow-
der within the geometric device, center-of-mass position
of the powder bed and surface pro�le of the granular ma-
terial within the building tank.

CONCLUDING REMARKS

In conclusion, we develop a numerical tool for simulat-
ing the dynamic behaviour of powder particles of com-
plex geometric shapes in additive manufacturing. Parti-
cles of complex shapes are built with the multisphere
method, whereas the moment of inertia of sphere clumps
is calculated analytically by excluding the additional (ar-
tifactual) contribution of sphere-sphere intersections to
the particle’s inertial properties. In the future, our model
should be improved in order to account for cohesional
forces, as well as for changes in mechanical properties
of the particles due to the temperature �elds and parti-
cle deformation. While the latter factor is negligible for
metallic powders [2], it must be incorporated into our
simulations in order to make them applicable for pow-
ders of thermoplastic materials [4, 5].
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